共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
利用强流脉冲电子束(HCPEB)技术对多晶纯铝样品进行辐照,采用透射电子显微镜详细分析了辐照诱发的空位簇缺陷.HCPEP辐照后,在辐照表层内形成了大量的四方形空位胞,其间包含位错圈和堆垛层错四面体(SFT)等类型的空位簇缺陷.1次辐照后,空位胞内产生空位型位错圈,5次辐照则主要产生SFT;10次辐照后,空位胞内产生的空位簇缺陷主要是位错圈,局部区域也观察到了SFT缺陷,在产生SFT的附近区域具有很低的位错密度或者几乎无位错出现.HCPEB辐照产生的瞬间加热和冷却诱发了幅值极大且应变速率极高的应力,这一因素
关键词:
强流脉冲电子束
多晶纯铝
空位簇缺陷
堆垛层错四面体 相似文献
3.
利用强流脉冲电子束(high-current pulsed electron beam,HCPEB)技术对多晶纯Ni进行了辐照处理,采用透射电子显微镜详细分析了辐照诱发的缺陷结构.HCPEB辐照后,纯镍表层积聚了幅值极大的残余应力,沿{111}晶面形成了稠密的位错墙及孪晶结构,另外还形成了大量的包括位错圈、堆垛层错四面体(SFT)及孔洞在内的空位簇缺陷.SFT缺陷的数量远高于其他空位簇缺陷,其周围区域位错密度很低.孔洞缺陷主要出现在SFT密集区域.HCPEB瞬间的加热和冷却诱发的幅值极大的应力和极高的应变
关键词:
强流脉冲电子束
多晶纯Ni
空位簇缺陷
堆垛层错四面体 相似文献
4.
利用强流脉冲电子束(HCPEB)装置对纯钼表面进行辐照处理,并利用X射线衍射仪,扫描电子显微镜(SEM)、透射电子显微镜(TEM)详细分析了辐照表面的微观结构和损伤效应. 1次HCPEB辐照后,纯钼表层积聚了极大的残余应力,多次辐照后表面未融化区域出现大量绝热剪切带,且局部区域发生开裂. 微观结构分析显示,辐照后材料表面形成发散状的位错组态和大量空位簇缺陷;绝热剪切带内部是尺寸为1 μm 左右等轴状的再结晶晶粒. 剪切带造成的材料表面局部软化以及间隙原子偏聚于晶界是材料发生开裂的主要原因. 另外,表面熔化区域可形成尺寸为20 nm左右的纳米晶.
关键词:
强流脉冲电子束
纯钼
绝热剪切带
空位簇缺陷 相似文献
5.
利用强流脉冲(HCPEB)电子束技术对多晶纯Cu进行了辐照处理,并利用透射电镜对HCPEB诱发的空位簇缺陷进行了表征.实验结果表明,HCPEP辐照金属可在纯Cu表层诱发大量的过饱和空位,并形成四方形空位胞及空位型位错圈和堆垛层错四面体(SFT),HCPEB瞬间的加热和冷却诱发的幅值极大的应力和极高的应变导致的整个原子平面的位移是空位簇缺陷形成的主要原因.此外,扫描电镜分析表明HCPEB辐照可以在纯Cu表面形成高密度、弥散分布和尺寸细小的微孔.过饱和空位或空位团簇沿晶体缺陷向表面扩散、凝聚是表面微孔形成的根 相似文献
6.
利用强流脉冲电子束(HCPEB)技术,对AISI 304L奥氏体不锈钢进行了表面辐照处理,详细考察了辐照前、后材料表面的微观结构和腐蚀性能。实验结果表明:经过HCPEB辐照后,材料表面的抗腐蚀性能有所改善;表面喷发形成熔坑实现清除夹杂物的净化作用,以及表面形成厚而致密的钝化膜可有效地阻碍点蚀,均是提高材料抗腐蚀性能不可忽视的因素。透射电子显微镜分析结果表明,HCPEB辐照材料表层时,诱发了大量的过饱和空位缺陷以及类型丰富且密度很高的线、面晶体缺陷,空位缺陷的凝聚形成了空位型位错圈和堆垛层错四面体等空位簇缺陷。这些缺陷有助于形成厚而致密的表面钝化膜,进而阻止阴离子穿过表面钝化膜,延迟腐蚀进程,提高受辐照材料的抗腐蚀性能。 相似文献
7.
为了考察材料晶体学特性对表面熔坑形成机制的影响,利用强流脉冲电子束(HCPEB)对喷丸前、后的304奥氏体不锈钢进行表面辐照处理,对HCPEB诱发的表面熔坑形貌进行了详细的表征。实验结果表明,HCPEB辐照后样品表面形成了大量的火山状熔坑,熔坑数密度和熔坑尺寸随电子束能量的增加而减小,材料表面的杂质或夹杂物容易成为熔坑的核心,并在熔坑形成的喷发过程中被清除,起到净化表面的作用。此外,喷丸前、后样品表面熔坑数密度遵循相似的分布规律,喷丸处理使熔坑数密度显著增大,表明材料的晶体学特性对表面熔坑形成有重要的影响,晶界、位错等结构缺陷是熔坑形核的择优位置。 相似文献
8.
层错四面体是一种典型的三维空位型缺陷,广泛存在于受辐照后的面心立方金属材料中,对材料的力学性能有显著的影响.目前,关于层错四面体对辐照材料层裂行为的影响还缺乏深入系统的研究.本文使用分子动力学方法模拟了含有层错四面体的单晶铜在不同冲击速度下的层裂行为,对整个冲击过程中的自由表面速度及微结构演化等进行了深入的分析.研究发现,层错四面体在冲击波作用下会发生坍塌,并进一步诱导材料产生位错、层错等缺陷.在中低速度加载下,层错四面体坍塌引起的缺陷快速向周围扩展,为孔洞提供了更宽的形核区域,促进了孔洞的异质成核,造成材料层裂强度大幅度减小.当冲击速度较高时,层错四面体坍塌导致的局部缺陷对材料的层裂强度不再有明显影响. 相似文献
9.
利用强流脉冲电子束装置在各种工艺条件下对奥氏体不锈钢、单晶铝及多晶铝等面心立方金属进行辐照处理.利用扫描电子显微镜和透射电子显微镜等详细分析了辐照样品的变形组织与结构.通过分析,在一定程度上建立起强流脉冲电子束诱发的应力特征与变形结构之间的关系,并对目前现有的几种应力波数值模拟结果进行了分析.实验结果表明,强流脉冲电子束能够在材料内部诱发102—103MPa的应力,其传播方式与材料的 晶体结构关系密切.这一应力是导致材料深层性能与微观组织结构发生变化的根源所在.
关键词:
强流脉冲电子束
应力
微观结构
变形 相似文献
10.
11.
利用强流脉冲电子束(HCPEB)装置对金属纯钛进行轰击,采用X射线衍射,扫描电子显微镜及透射电子显微镜技术详细分析了轰击样品表层的结构和缺陷. X射线衍射分析表明, HCPEB能够在材料表层诱发幅值为 GPa量级的压应力,并在(100), (102)和(103)晶面出现择优取向.表层微观结构的观察表明: HCPEB轰击后材料表层发生了马氏体相变,形成了大量的片状马氏体组织; 此外, HCPEB轰击还在辐照表面诱发了强烈的塑性变形,一次轰击后,晶粒内部的塑性变形以(100)晶面的位错滑移为主,位错密度显著提高;多次轰击后,样品变形结构发生变化,变形孪晶的数量明显增多. 这些变形微结构不仅影响表层的织构演化行为,而且还能细化晶粒,进而提高材料表面硬度, 为HCPEB技术进行纯钛表面强化提供了一条有效的途径. 相似文献
12.
利用强流脉冲电子束(HCPEB)技术对多晶纯镍进行了表面处理,并采用扫描电镜和透射电镜对强流脉冲电子束诱发的表面及亚表面的微观组织结构进行了分析.实验结果表明,HCPEB辐照后表面熔化,形成了深度约为2 μm的重熔层,快速的凝固使重熔层中形成晶粒尺寸约为80 nm的纳米结构.位于轰击表面下方5—15 μm深度范围内强烈塑性变形引起的位错墙和其内部的亚位错墙结构是该区域的主要结构特征.这些缺陷结构通过互相交割细化晶粒,最终导致尺寸约为10 nm的纳米晶粒的形成.
关键词:
强流脉冲电子束
纳米结构
多晶纯镍
位错墙 相似文献
13.
The microstructure, hardness and corrosion resistance of commercially pure Ti treated by low energy high current pulsed electron beam (LEHCPEB) have been investigated. The thin near-surface melted layer rapidly solidified into β and subsequently transformed into ultrafine α′ martensite. This has led to a drastic improvement of the corrosion properties and a significant increase (more than 60%) in hardness of the top surface. 相似文献
14.
利用强流脉冲电子束 (HCPEB) 技术对金属纯锆进行表面处理, 采用X射线衍射, 扫描电子显微镜及透射电子显微镜详细分析了辐照诱发的表层微观结构和缺陷. X射线分析结果表明, HCPEB辐照后在材料表层诱发幅值为GPa量级的压应力, 并形成{0002}, {1012}, {1120}及{1013}织构. 表层微观结构观察表明, 与其他金属材料不同, HCPEB辐照在材料表层诱发的熔坑数量极少, 多次轰击甚至几乎没有表面熔坑的形成. 此外, 在快速的加热和冷却状态下, 在表面熔化层形成大量的超细晶粒结构, 同时诱发马氏体相变和强烈的塑性变形. 1次HCPEB辐照后表层内形成的变形微结构以位错为主, 孪晶数量较少; 5 次辐照样品的位错密度迅速增高, 孪晶数量也显著增加; 10次辐照后样品中的变形微结构以变形孪晶为主, 且出现二次孪晶现象. 表层晶粒内部变形的晶体学特征不仅决定了表层的织构演化行为, 而且还起到细化晶粒的作用, 为纯锆及锆合金表面强化提供了一条有效的途径.
关键词:
强流脉冲电子束
纯锆
微观结构
应力状态 相似文献
15.
研究了不同脉冲次数强流脉冲电子束表面改性对CuFe10合金组织及性能的影响。强流脉冲电子束处理CuFe10合金的重熔表面出现了火山坑和直径为100 nm到1 m的富铁球,表明了强流脉冲电子束处理CuFe10合金表面发生了液相分离。强流脉冲电子束脉冲轰击30次后,CuFe10合金表面的显微硬度与耐蚀性能均得到显著改善,主要是由于强流脉冲电子束轰击处理CuFe10合金表层引发的快速熔凝过程中表面发生了液相分离及晶粒细化的缘故。 相似文献
16.