首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The crystal structure of a natural sulfide Cu3,44Ag0,56Pb2Bi6S13 (Сmcm, Z = 4, a = 3.973(1) Å, b = 13.370(2) Å, c = 42.182(7) Å, R = 0.059) is determined. The structure has seven cation positions: two of them (Cu and Ag) are in a tetrahedral environment of sulfur atoms; one (Pb), in a special position (mm2), has a coordination polyhedron in the form of a bicapped trigonal prism; and the other cation positions are surrounded by sulfur atoms forming distorted octahedra. The mirror symmetry plane perpendicular to the c translation causes microtwinning by cutting a layer of trigonal prisms framed by tetrahedron ribbons. These layers are divided by those composed by edge-linked octahedra with a diagonal ribbon of five octahedra (N = 5). The cation and anion positions are ordered by individual sublattices with pseudohexagonal subcells on the m planes perpendicular to the a translation, which concentrate the positions of all the atoms. Supposedly, this natural sulfide is the previously described (1885) yet unconfirmed alaskaite mineral from the lillianite–heyrovskyite homological series and may be isostructural to the ourayite mineral.  相似文献   

2.
The surface tension, surface concentration, viscosity and mutual diffusion co-efficients of the Ag–In and Ag–Sb liquid alloys have been calculated using energetics and derivables from a statistical mechanical framework which recognises the formation of atom clusters of self associates. Our calculations suggest the existence of some form of local order in the systems. Ag–In showed higher tendencies to heterocoordination in the bulk-manifested higher values of mutual diffusion coefficient throughout the concentration range. The viscosity values of Ag–In and Ag–Sb were calculated using the expression reported by Kucharsky which relates the viscosity of a liquid binary alloy to the activity coefficients of the liquid alloy components that are raised to some power m. This exponent m is a fitted parameter. The calculated viscosity values for Ag–Sb had some reasonable agreement with experiment above 0.5 atomic fraction of Sb, using a fitted parameter value of m = 4.5. The fitted parameter value for the viscosity of Ag–In is expected to be in the range 1.5 ≤ m ≤ 3.5.  相似文献   

3.
The formation of Ag–Au, Cu–Au, and Ag–Cu bimetallic particles on the surface of highly oriented pyrolytic graphite was studied by X-ray photoelectron spectroscopy. Samples with the core–shell structure of particles were prepared by sequential thermal vacuum deposition. The thermal stability of the samples was studied over a wide range of temperatures (25-400°C) under ultrahigh-vacuum conditions. The heating of the samples to ~250°C leads to the formation of bimetallic alloy particles with a relatively uniform distribution of metals in the bulk. The thermal stability of the samples with respect to sintering depends on the nature of the supported metals. Thus, the Ag–Au particles exhibited the highest thermal resistance (~350°C) under ultrahigh-vacuum conditions, whereas the Ag–Cu particles agglomerated even at ~250°C.  相似文献   

4.
A 3-D complex K2[Ag2(biim)2]2P2W18O62 (biim?=?biimidazole) (1) has been hydrothermally synthesized and characterized by IR, thermogravimetric, and single-crystal X-ray diffraction. Single-crystal X-ray structural analysis reveals that 1 exhibits a 1-D wavelike chain constructed from µ3-bridging oxygen atoms of [P2W18O62]6? and [Ag2(biim)2]2+. The K+ link to six oxygen atoms of three P2W18 clusters and 12 equatorial terminal oxygen atoms of P2W18 clusters link to six K+, resulting in a 3-D framework with a relatively short Ag–Ag bond [2.836?Å]. The electrochemical behavior of 1 modified carbon paste electrode (1-CPE) has been studied. The results indicate that 1-CPE has remarkable stability.  相似文献   

5.
Water pollution due to industrial effluents from industries which utilize dyes in the manufacturing of their products has serious implications on aquatic lives and the general environment. Thus, there is need for the removal of dyes from wastewater before being discharged into the environment. In this study, a nanocomposite consisting of silver, silver oxide (Ag2O), zinc oxide (ZnO) and graphene oxide (GO) was synthesized, characterized and photocatalytically applied in the degradation (and possibly mineralization) of organic pollutants in water treatment process. The Ag–Ag2O–ZnO nanostructure was synthesized by a co-precipitation method and calcined at 400 °C. It was functionalized using 3-aminopropyl triethoxysilane and further anchored on carboxylated graphene oxide via the formation of an amide bond to give the Ag–Ag2O–ZnO/GO nanocomposite. The prepared nanocomposite was characterized by UV–Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), energy dispersive X-ray spectrometry (EDX), Fourier transformed infrared spectroscopy (FTIR), and Raman spectroscopy. The applicability of Ag–Ag2O–ZnO/GO nanocomposite as a photocatalyst was investigated in the photocatalytic degradation of acid blue 74 dye under visible light irradiation in synthetic wastewater containing the dye. The results indicated that Ag–Ag2O–ZnO/GO nanocomposite has a higher photocatalytic activity (90% removal) compared to Ag–Ag2O–ZnO (85% removal) and ZnO (75% removal) respectively and thus lends itself to application in water treatment, where the removal of organics is very important.  相似文献   

6.
Summary. Phase equilibria in the Ag–In–Pd system were determined at 700°C based on experimental results for 21 alloys. A ternary compound T1 (with the approximate composition AgInPd2) was identified by XRD analysis. These data were compared with the results of a CALPHAD-type prediction, based on binary thermodynamic data only and a symmetrical Redlich–Kister–Muggianu model. The experimental results will serve as a basis for refined thermodynamic modeling of the different phases in this ternary system.  相似文献   

7.
The geometric and electronic properties of small AgmPdn clusters with m + n = 2–5 are studied within the framework of density functional theory in conjunction with two hybrid and one GGA exchange–correlation functional. For every composition, the global minimum is identified by using geometry optimization for a collection of initial structures. Results indicate that, for bimetallic tetramers and pentamers, the clusters shift from two-dimensional to three-dimensional structures with the addition of a second Pd atom. Ag2Pd2 is identified as the most stable tetramer by the calculation of the excess energy and second energy difference of bimetallic clusters. Concerning the fragmentation channels it is seen that the most favourable route in the majority of cases is via the evaporation of a single atom. Density of states calculations reveal that the increase of Pd content depletes the isolated s states close to the Fermi level, while at the same time shifts the d states to higher energies.  相似文献   

8.
The thermodynamic and microscopic structure of Ag–Al liquid alloy at 1273?K has been studied by using regular associated solution model. This model has been utilised to determine the complex concentration in a regular associated solution of Ag and Al. We have then used the complex concentration to calculate the free energy of mixing, enthalpy of mixing, entropy of mixing, activity and concentration fluctuations in long wavelength limit S CC(0) and the Warren–Cowley short-range parameter α 1. The analysis suggests that heterocoordination leading to the formation of complex Ag3Al is likely to exist in the liquid but is of a weakly interacting nature. The theoretical analysis reveals that the pairwise interaction energies between the species depend considerably on temperature and the alloy is more ordered towards Ag-rich region. The alloy behaves like a segregating system in Al-rich region.  相似文献   

9.
A comparative assessment of the 48-h acute toxicity of aqueous nanoparticles synthesized using the same methodology, including Au, Ag, and Ag–Au bimetallic nanoparticles, was conducted to determine their ecological effect in freshwater environments through the use of Daphnia magna, using their mortality as a toxicological endpoint. D. magna are one of the standard organisms used for ecotoxicity studies due to their sensitivity to chemical toxicants. Particle suspensions used in toxicity testing were well-characterized through a combination of absorbance measurements, atomic force or electron microscopy, flame atomic absorption spectrometry, and dynamic light scattering to determine composition, aggregation state, and particle size. The toxicity of all nanoparticles tested was found to be dose and composition dependent. The concentration of Au nanoparticles that killed 50% of the test organisms (LC50) ranged from 65–75 mg/L. In addition, three different sized Ag nanoparticles (diameters = 36, 52, and 66 nm) were studied to analyze the toxicological effects of particle size on D. magna; however, it was found that toxicity was not a function of size and ranged from 3–4 μg/L for all three sets of Ag nanoparticles tested. This was possibly due to the large degree of aggregation when these nanoparticles were suspended in standard synthetic freshwater. Moreover, the LC50 values for Ag–Au bimetallic nanoparticles were found to be between that of Ag and Au but much closer to that of Ag. The bimetallic particles containing 80% Ag and 20% Au were found to have a significantly lower toxicity to Daphnia (LC50 of 15 μg/L) compared to Ag nanoparticles, while the toxicity of the nanoparticles containing 20% Ag and 80% Au was greater than expected at 12 μg/L. The comparison results confirm that Ag nanoparticles were much more toxic than Au nanoparticles, and that the introduction of gold into silver nanoparticles may lower their environmental impact by lowering the amount of Ag which is bioavailable.  相似文献   

10.
This paper studies the effects of Ag atomic segregation from the inner (100) or (111) planes on the melting of Ag–Pd clusters with different sizes by a molecular dynamics simulation. The results show that Ag segregation leads to the atomic energy decreases with increasing the temperature. Furthermore, the effect of the (100) segregation is larger than that of the (111) segregation. Meanwhile, the influence of segregation on the energy decreases with increasing the cluster size. The melting points of the clusters without segregation are the largest, followed by the clusters with a (111) and (100) segregation.  相似文献   

11.
建立以大体积进样(250μL)–离子色谱测定水中溴酸盐(BrO_3~–)的方法。采用Ag柱离线去除样品中大量Cl~–以消除Cl~–干扰,同时保证痕量溴酸盐未沉淀,过滤后直接进样测定。BrO_3~–的质量浓度在2.0~25.0μg/L范围内与色谱峰面积呈良好的线性关系,线性相关系数r=0.999 2,方法检出限为0.8μg/L。自来水和矿泉水样品3浓度水平加标回收率为85.0%~101.0%,测定结果的相对标准偏差为3.6%~12.9%(n=6)。该方法样品处理简单,检出限低,准确度和精密度高,满足分析测试的要求。  相似文献   

12.
Here, we report the preparation of nano silver (Ag) and nano Ag-erbium (Ag–Er) co-embedded potassium–zinc-silicate based monolithic glass nanocomposites by a controlled heat-treatment process of precursor glasses. The nanocomposites were characterized by differential scanning calorimeter, dilatometer, UV–Visible absorption spectrophotometer, X-ray diffractometer and transmission electron microscope and spectroflurimeter. A strong surface plasmon resonance (SPR) band is observed around 430 nm in all the heat-treated glass nanocomposite samples due to the formation of Ag0 nanoparticles (NP). The Ag-glass nanocomposite samples display nearly 2-fold enhanced photoluminescence (PL) at 470 nm upon excitation at 290 nm until the size of the NP increases to the value equals to the mean free path of conduction electrons inside the particles. On contrary to this, the photoluminescence spectra of Er3+ ions exhibit a gradual decrease of NIR emission at 1540 nm due to 4I13/2 → 4I15/2 transition under excitation at 523 nm in the heat-treated glass nanocomposites which happened due to excitation energy transfer of Er3+ ions to the Ag NP, acting as ‘plasmonics diluents’ for Er3+ ions. These nanocomposites have huge potential for various nanophotonic applications.  相似文献   

13.
Integral and differential (with respect to the composition) isotherms of changes in the interfacial free energy (m– ), the charge density q, and the surface composition X Au of alloys equilibrated with an aqueous surface-inactive electrolyte are obtained in terms of a finite-thickness interfacial layer, with use of concentration dependences of activity coefficients of components of a polycrystalline binary alloy. Using ac measurements of the double-layer parameters, it is stated that the surface-active component in the Ag–Au|F, H2O and Ag–Au|ClO 4, H2O systems at 298 K is gold. The Ag–Au solid solution shows negative deviations from Raoult's law, except for the compositions X Au 0.04 and X Au 0.80, where the solid solution properties approach those of an ideal solution.  相似文献   

14.
We studied the Y–Ba–Cu–O/Ag equilibrium diagram in oxygen atmosphere around the composition YBa2Cu3Ox/Ag35 mass%. We found a high thermal effect: the peritectic decomposition temperature of Y-123 phase is lowered from 1040 to 940°C. We demonstrate here that the nature of the phenomenon is not chemical. We explained it as the result of a mechanical segregation of Y-123 decomposition products from Y-123 phase, performed by silver. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Hydrogenolysis of glycerol to 1,2-propanediol and 1,3-propanediol has significant scientific importance and commercial interest due to the huge surplus of glycerol and the various application of propanediols. A series of supported Ag–Cu catalysts synthesized by impregnation method were studied for hydrogenolysis of glycerol to propanediols. The catalysts were characterized by H2-TPR, NH3-TPD, XRD, BET, N2O chemisorption, TG, ICP and SEM. It was observed that the loading of 5% Ag–Cu-based catalysts facilitated the reduction, surface acidity and dispersion of the Cu particles, which improved the conversion of glycerol and promoted the generation of propanediols. It was also found that when loading Ag and Cu simultaneously on Al2O3, the catalyst had a better performance for the reaction because of the higher acidity, dispersion and surface area of the Cu species on the catalyst surface. In addition, effects of metal concentrations, metal impregnation sequence, reaction temperature, reaction pressure, reaction time, solvent and pH value of the solution on glycerol hydrogenolysis together with the recyclability of catalyst were investigated in detail. The optimal 5Ag–15Cu/Al2O3 achieved 66.4% glycerol conversion with 68.2% 1,2-propanediol and 3.1% 1,3-propanediol selectivity at 200 °C under 3.5 MPa in ethanol for 8 h.  相似文献   

16.
Cu–Ag nanoparticles have been successfully synthesized by one-pot solvothermal treatment of a mixture of AgNO3 and Cu(OAc)2·H2O in ethylene glycol solution at 180 °C for 10 h. The samples were characterized by UV–visible absorption, X-ray diffraction (XRD), and extended X-ray absorption fine structure (EXAFS) spectroscopy, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that Cu–Ag nanoparticles and a small amount of phase-separated Cu–Ag alloy nanoparticles with an average diameter of 100 ± 30 nm were synthesized by the solvothermal treatment procedure. The mechanism of formation is discussed.  相似文献   

17.
Preparation of granular magnetic Co–Ag films produced by pulsed electrodeposition from a chloride bath containing both cobalt ions and a low concentration of silver has been investigated. Deposition of cobalt on Ag is performed by a double pulse method. Combining in situ electrochemical and microgravimetric measurements, the kinetics of silver and cobalt reduction are presented. The thickness and deposition rates are monitored using an electrochemical quartz crystal microbalance (EQCM) during the growth of each material. Magnetic measurements have shown a superparamagnetic behavior in agreement with the existence of very small cobalt particles. Giant magnetoresistance (GMR) of ∼2% at room temperature is observed for the Co5Ag95 sample.  相似文献   

18.
The structures and thermal properties of Ag–Pt–Ni ternary nanoclusters varying with different compositions and sizes are studied by Monte Carlo and molecular dynamics simulations. It can be found that silver atoms tend to occupy the surface and platinum atoms favor the subsurface occupation, whereas the inner is occupied by nickel atoms due to the different surface energies and lattice parameters. In addition, there is a non-monotonous relationship between the melting points and compositions of Ag–Pt–Ni ternary nanoclusters according to molecular dynamics simulations. In addition, a linear decrease in melting point with \(N^{ - 1/3}\) is found for both monometallic and trimetallic clusters. This behavior is consistent with Pawlow’s law.  相似文献   

19.
20.
Surface enhanced Raman scattering (SERS) studies have been undertaken on Ag doped sol–gel derived film with 7-azaindole (7-AI) used as the reference compound. The enhancement factor in the film is comparable with the result of the chloride aggregated silver citrate sol. Along with the spectral observation and assignments of the frequencies, the significance of colloidal sol–gel film in which the size of the metal is in the dimensions of nanometers have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号