首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A fast spin echo two-point Dixon (fast 2PD) technique was developed for efficient T2-weighted imaging with uniform water and fat separation. The technique acquires two interleaved fast spin echo images with water and fat in-phase and 180° out-of-phase, respectively, and generates automatically separate water and fat images for each slice. The image reconstruction algorithm uses an improved and robust region-growing scheme for phase correction and achieves consistency in water and fat identification between different slices by exploiting the intrinsic correlation between the complex images from two neighboring slices. To further lower the acquisition time to that of a regular fast spin echo acquisition with a single signal average, we combined the fast 2PD technique with sensitivity encoding (SENSE). Phantom experiments show that the fast 2PD and SENSE are complementary in scan efficiency and signal-to-noise ratio (SNR). In vivo data from scanning of clinical patients demonstrate that T2-weighted imaging with uniform and consistent fat separation, including breath-hold abdominal examinations, can be readily performed with the fast 2PD technique or its combination with SENSE.  相似文献   

2.
By associating each slice in a spatially homogeneous sample with a different inversion-recovery delay time, multislice methods are used to reduce the acquisition times of 2D inversion-recovery T1-T2 relaxation spectra to just a few minutes. The increased speed comes at the expense of reduced signal/noise and this is reflected most noticeably in shifts in the component longitudinal relaxation times. Nevertheless, the major features of the 2D relaxation spectra are reproduced.  相似文献   

3.
The effect of increased repetition time, TR, on the precision of inversion-recovery measurements of the spin-lattice relaxation time, T(1), was calculated theoretically, simulated numerically, and measured experimentally. All three methods yielded similar results. With constant inversion times, the T(1) precision was independent of TR. Therefore, 1) multiple-slice inversion-recovery fast-spin-echo T(1) maps should be made one slice at a time, not with interleaved acquisition, and 2) once the longest inversion time t(i) has been set, TR should be set just enough longer than the longest t(i) to allow data acquisition.  相似文献   

4.
Optimal control methods have been recently introduced to improve the design of selective radio frequency pulses and several optimized selective pulses that can produce excellent slice profiles have been reported. These pulses usually require high peak rf amplitudes to implement and thus can not be widely utilized because of the limitations of the specific absorption rate and the rf power amplifier of a clinical system. We have a Siemens 1.5 T MRI clinical system. Several pulse files which consist of the bandwith matched 90° and 180° selective pulses are provided. Some of these can produce excellent slice profiles. However, they can only be used in the pulse sequences with the pulse length of 5.12 msec. The purpose of this paper is to improve the slice profiles produced by the pulse file in the pulse sequences with the shorter 2.56 msec pulse length. A pulse file optimized by the conjugate gradient method is proposed to substitute the 2.56 msec Siemens pulse file. Our experimental results confirm that the slice profiles and images are improved by the optimized pulse file with a lower peak voltage. The proposed pulse file can also be applied in other clinical MRI systems.  相似文献   

5.
Several groups have reported using a method of limiting the field of view (FOV) where the slices excited by the 90 and 180 degree pulses are perpendicular. However, only one slice can be excited during each repetition time, so multislice imaging is not possible. We present a modification of this method that allows multislice imaging. The slices excited by the 90 degrees and 180 degrees pulses are at a small angle; the field of view is limited and multislice imaging is possible. The modifications also allow the center of the FOV to be offset to any position. We describe the conditions that yield optimal images for the given FOV, slice thickness, and interslice gap. Representative images demonstrating the features of the technique are presented. The technique can be used to reduce the number of phase-encoding steps resulting in reduced imaging time, or it can be used to increase the spatial resolution without increasing the imaging time.  相似文献   

6.
Multislice Q2TIPS is a widely used pulsed arterial spin labeling (PASL) technique for efficient and accurate quantification of cerebral blood flow (CBF). Slices are typically acquired inferior to superior from a tagging plane. Superior slices show signal loss greater than the loss expected from blood T1 decay. In order to assess the reasons for this additional signal loss, three single-slice acquisition studies were compared to multislice acquisition (six slices) in healthy volunteers. In Study 1 (n=8), the tagging plane was fixed in location, and the inversion time (TI2) was 1500 ms for each slice. For Study 2 (n=12), the tagging plane was fixed as in Study 1; however, TI2 increased as slices were acquired further from the tagging plane. In Study 3 (n=9), the tagging plane was kept adjacent to the imaging slice, and TI2 was 1500 ms for every slice. Gray matter (GM) and white matter (WM) signal-to-noise ratio (SNR) and CBF were measured per slice. GM SNR from single-slice acquisitions was significantly higher at slices 4-6 in Study 2 and at slices 2-6 in Study 3 compared to multislice acquisitions. Signal loss in distal slices of multislice acquisitions can be attributed to the destruction of tagged bolus in addition to blood T1 decay. If limited brain coverage is acceptable, perfusion images with greater SNR are achievable with limited slices and placement of the tagging region immediately adjacent to the site of interest.  相似文献   

7.
There has been vast interest in determining the feasibility of functional magnetic resonance imaging (fMRI) as an accurate method of imaging brain function for patient evaluations. The assessment of fMRI as an accurate tool for activation localization largely depends on the software used to process the time series data. The performance evaluation of different analysis tools is not reliable unless truths in motion and activation are known. Lack of valid truths has been the limiting factor for comparisons of different algorithms. Until now, currently available phantom data do not include comprehensive accounts of head motion. While most fMRI studies assume no interslice motion during the time series acquisition in fMRI data acquired using a multislice and single-shot echo-planar imaging sequence, each slice is subject to a different set of motion parameters. In this study, in addition to known three-dimensional motion parameters applied to each slice, included in the time series computation are geometric distortion from field inhomogeneity and spin saturation effect as a result of out-of-plane head motion. We investigated the effect of these head motion-related artifacts and present a validation of the mapping slice-to-volume (MSV) algorithm for motion correction and activation detection against the known truths. MSV was evaluated, and showed better performance in comparison with other widely used fMRI data processing software, which corrects for head motion with a volume-to-volume realignment method. Furthermore, improvement in signal detection was observed with the implementation of the geometric distortion correction and spin saturation effect compensation features in MSV.  相似文献   

8.
It has been demonstrated that transient processes, observed in a single crystal of NaNO2 acted upon by pulse sequences MW-2 and MW-4 and their modifications with 180° flip angle of the pulses (Solid State Nucl. Magn. Resonance 10 (1997) 63; Sov. Phys.—JETP 88(5) (1999) 1580), which manifest themselves in the oscillating form of the NQR signals envelope, can be explained in the frames of a two-particle model. It has been proved that the nature of echo signals in the effective field of multi-pulse sequences received by the inversion of the phase of the sequence pulses or by introducing an additional 180° pulse is connected with re-focusing of accumulated digressions of the flip angle from the ideal 180° pulse. Experimental results of observing single and multiple echoes in a number of powdered nitrogenated substances in the effective field of various sequences at room temperature have been presented.  相似文献   

9.
The advantages of event-related functional Magnetic Resonance Imaging (fMRI) and the increasing use of fMRI in cognitive experiments are both driving the development of techniques that allow images sensitive to the blood oxygen level-dependent effect to be acquired at ever-higher temporal resolution. Here, we present a technique based on the use of echo shifting (ES) in conjunction with a multislice (MS) echo planar imaging (EPI) readout, which allows T2*-weighted images to be generated with a repetition time per slice that is less than the echo time (TE). Using this ES-MS-EPI approach, it is shown that images with a TE of 40 ms can be acquired with an acquisition time per slice of only 27 ms. The utility of the MS-ES-EPI sequence is demonstrated in a visual-motor, event-related fMRI study in which nine-slice image volumes are acquired continuously at a rate of 4.1 Hz. The sequence is shown to produce reliable activation associated with both visual stimuli and motor actions.  相似文献   

10.
Susceptibility artifacts due to metallic prostheses are a major problem in clinical magnetic resonance imaging. We theoretically and experimentally analyze slice distortion arising from susceptibility differences in a phantom consisting of a stainless steel ball bearing embedded in agarose gel. To relate the observed image artifacts to slice distortion, we simulate images produced by 2D and 3D spin-echo (SE) and a view angle tilting (VAT) sequence. Two-dimensional SE sequences suffer from extreme slice distortion when a metal prosthesis is present, unlike 3D SE sequences for which--since slices are phase-encoded--distortion of the slice profile is minimized, provided the selected slab is larger than the region of interest. In a VAT sequence, artifacts are reduced by the application of a gradient along the slice direction during readout. However, VAT does not correct for the excitation slice profile, which results in the excitation of spins outside the desired slice location and can lead to incorrect anatomical information in MR images. We propose that the best sequences for imaging in the presence of a metal prosthesis utilize 3D acquisition, with phase encoding replacing slice selection to minimize slice distortion, combined with excitation and readout gradient strengths at their maximum values.  相似文献   

11.
The purpose of this study was to optimize an inversion-recovery (IR) turbo fast low-angle shot (FLASH) for multislice imaging by evaluating the accuracy of calculated the relaxation-rate (R1) for different inversion times (TI). This is important for tracer kinetic modeling because it requires a system responding linearly to input. R1 are linearly related to changes in the concentration of gadolinium (Gd)-diethylenetriaminepentaacetic acid (DTPA), and R1 is a parameter that can be derived from the magnetic resonance (MR) signal. The accuracy of calculated R1 using an IR turbo fast low-angle shot was evaluated in phantoms and for increasing TIs using spectroscopically measured R1 values as reference. Signal curves, obtained in vivo after a bolus injection of Gd-DTPA, were used in an analytical computer program to study the effect of different TI-values on accurate calculation of R1. Results show that TIeff should be <200 ms to measure the bolus-passage of Gd-DTPA in blood accurately, whereas the myocardial response can be measured correctly for TIeff < 870 ms at 1.5 T. The initial slope of the myocardial signal enhancement curve becomes steeper for larger TI values, whereas the calculated R1 curves were similar, indicating that these curves, rather than signal curves, are more suitable even for qualitative perfusion evaluation. It is concluded that the results can be incorporated in a multislice IR turbo fast low-angle shot using the first slice (with a short TI) for assessment of both the arterial input function and the tissue response and the second slice in another position for assessment of the tissue response alone.  相似文献   

12.
MRI reconstruction using super-resolution is presented and shown to improve spatial resolution in cases when spatially-selective RF pulses are used for localization. In 2-D multislice MRI, the resolution in the slice direction is often lower than the in-plane resolution. For certain diagnostic imaging applications, isotropic resolution is necessary but true 3-D acquisition methods are not practical. In this case, if the imaging volume is acquired two or more times, with small spatial shifts between acquisitions, combination of the data sets using an iterative super-resolution algorithm gives improved resolution and better edge definition in the slice-select direction. Resolution augmentation in MRI is important for visualization and early diagnosis. The method also improves the signal-to-noise efficiency of the data acquisition.  相似文献   

13.
Contrast manipulation and artifact assessment of 2D and 3D RARE sequences   总被引:2,自引:0,他引:2  
The extent of contrast manipulation and the assessment of characteristic artifacts in imaging studies of brain and knee as performed with novel variants of the Rapid Acquisition Relaxation Enhanced (RARE) sequence are reported. Methods of ordering the phase encoding within one or two echo trains are proposed for manipulating T2 contrast. Options for minimizing artifacts associated with the various schemes are discussed. The extent of T1 contrast manipulation in RARE sequences is explored by varying repetition rates in a signal averaging scheme and by applying inversion pulses prior to data acquisition. The results demonstrate that RARE sequences can be utilized for obtaining good quality images with a range of tissue contrast options similar to those associated with slower spin-echo methods. They also suggest that RARE applications need not be confined to highlighting long T2 fluid spaces, an application already well documented.  相似文献   

14.
Diffusion-weighted three-dimensional MP-RAGE MR imaging   总被引:1,自引:0,他引:1  
The advantages of three-dimensional (3D) acquisition are that you obtain thinner and more slices with better profiles, and better signal-to-noise ratio for an equivalent slice thickness. Three-dimensional acquisition is preferable for obtaining contiguous thin-slice MR images. However, the acquisition time extends compared with the two-dimensional acquisition because the second phase-encode axis is applied by the 3D acquisition. Therefore, 3D acquisition should be a high-speed imaging method. In this paper, a new diffusion-sensitive 3D magnetization-prepared rapid gradient-echo (3D MP-RAGE) sequence was studied. In this sequence, a preparation phase with a 90 degrees RF-motion proving gradient (MPG): MPG-180 degrees RF-MPG-90 degrees RF pulse train (diffusion-weighted driven-equilibrium Fourier transform) was used to sensitize the magnetization to diffusion. Centric k-space acquisition order is necessary to minimize saturation effects from tissues with short relaxation times. From phantom experimental results, the effect of the diffusion weighting was changed by the centric vs. sequential k-space acquisition order. The effect of centric k-space acquisition order was larger than the effect of sequential k-space acquisition order. The contrast of centric k-space acquisition order became equal to the contrast of conventional diffusion-weighted spin echo. From rat experimental results, small isotropic diffusion-weighted image data (voxel size: 0.625 x 0.625 x 0.625 mm3) were obtained. This sequence was useful in vivo.  相似文献   

15.
The magnetization under the spin-lattice relaxation and the nuclear magnetic resonance radiofrequency (RF) pulses is calculated for a signal RF pulse train and for a sequence of multiple RF pulse-trains. It is assumed that the transverse magnetization is zero when each RF pulse is applied. The result expressions can be grouped into two terms: a decay term, which is proportional to the initial magnetization M0, and a recovery term, which has no M0 dependence but strongly depends on the spin-lattice relaxation and the equilibrium magnetization Meq. In magnetic resonance pulse sequences using magnetization in transient state, the recovery term produces artifacts and can seriously degrade the function of the preparation sequence for slice selection, contrast weighting, phase encoding, etc. This work shows that the detrimental effect can be removed by signal averaging in an eliminative fashion. A novel fast data acquisition method for constructing the spin-lattice relaxation (T1) map is introduced. The method has two features: (i) By using eliminative averaging, the curve to fit the T1 value is a decay exponential function rather than a recovery one as in conventional techniques; therefore, the measurement of Meq is not required and the result is less susceptible to the accuracy of the inversion RF pulse. (ii) The decay exponential curve is sampled by using a sequence of multiple pulse-trains. An image is reconstructed from each train and represents a sample point of the curve. Hence a single imaging sequence can yield multiple sample points needed for fitting the T1 value in contrast to conventional techniques that require repeating the imaging sequence for various delay values but obtain only one sample point from each repetition.  相似文献   

16.
A fast 3D look-locker method for volumetric T1 mapping.   总被引:1,自引:0,他引:1  
We introduce a fast technique, based on the principles of the 2D Look-Locker T1 measurement scheme, to rapidly acquire the data for accurate maps of T1 in three dimensions. The acquisition time has been shortened considerably by segmenting the acquisition of the k(y) phase encode lines. Using this technique, the data for a 256 x 128 x 32 volumetric T1 measurement can be acquired in 7.6 min. T1 measurements made in phantoms with T1s between 200 and 1200 ms had an accuracy of 4% and a reproducibility of 3.5%. Measurements of T1 made in normal brain using the fast 3D sequence corresponded well with inversion-recovery fast spin-echo measurements.  相似文献   

17.
An MR imaging technique has been developed producing head and body images of diagnostic quality in only a few seconds acquisition time. The Fourier type imaging technique uses excitation with relatively small excitation angels, echoes produced by gradient inversion, and extremely fast profile repetition. A typical result at 0.5 T is an artifact-free head image of 128 x 128 resolution, 10 mm slice thickness in an acquisition time of 2 seconds.  相似文献   

18.
MR image nonuniformity can vary significantly with the spin-echo pulse sequence repetition time. When MR images with different nonuniformity shapes are used in a T1-calculation the resulting T1-image becomes nonuniform. As shown in this work the uniformity TR-dependence of the spin-echo pulse sequence is a critical property for T1 measurements in general and for ferrous sulfate dosimeter gel (FeGel) applications in particular. The purpose was to study the characteristics of the MR image plane nonuniformity in FeGel evaluation. This included studies of the possibility of decreasing nonuniformities by selecting uniformity optimized repetition times, studies of the transmitted and received RF-fields and studies of the effectiveness of the correction methods background subtraction and quotient correction. A pronounced MR image nonuniformity variation with repetition and T1 relaxation time was observed, and was found to originate from nonuniform RF-transmission in combination with the inherent differences in T1 relaxation for different repetition times. The T1 calculation itself, the uniformity optimized repetition times, nor none of the correction methods studied could sufficiently correct the nonuniformities observed in the T1 images. The nonuniformities were found to vary considerably less with inversion time for the inversion-recovery pulse sequence, than with repetition time for the spin-echo pulse sequence, resulting in considerably lower T1 image nonuniformity levels.  相似文献   

19.
Optimizing tissue contrast in magnetic resonance imaging   总被引:1,自引:1,他引:0  
Magnetic resonance imaging demands that tissue contrast and signal-to-noise advantages be sought in each component of the imaging system. One component of magnetic resonance imaging in which contrast and signal-to-noise ratios are easily manipulated is in the choice of pulse sequences and interpulse delay times. This article provides a general method for determining the best choices of interpulse delay times in pulse sequences and applies that method to saturation recovery, inversion recovery, and spin-echo sequences. Saturation recovery and inversion recovery sequences with rephasing pulses, and tissues with unequal hydrogen densities are considered. Optimization of pulse sequences is carried out for the two distinct cases of (a) a fixed number of sequence repetitions and (b) a fixed total imaging time. Analytic expressions are derived or approximate expressions are provided for the interpulse delay times that optimize contrast-to-noise ratios in each pulse sequence. The acceptable range of interpulse delay times to obtain reasonable contrast using each pulse sequence is discussed.  相似文献   

20.
In this study, we combined the advantages of a fast multi-slice spiral imaging approach with a multiple gradient-echo sampling scheme at high magnetic field strength to improve quantification of BOLD and inflow effects and to estimate T2* relaxation times in functional brain imaging. Eight echoes are collected with echo time (TE) ranging from 5 to 180 ms. Acquisition time per slice and echo time is 25 ms for a nominal resolution of 4 x 4 x 4 mm3. Evaluation of parameter images during rest and stimulation yields no significant activation on the inflow sensitive spin-density images (rho or I0-maps) whereas clear activation patterns in primary human motor cortex (M1) and supplementary motor area (SMA) are detected on BOLD sensitive T2*-maps. The calculation of relaxation times and rates of the activated areas over all subjects yields an average T2* +/- standard deviation (SD) of 46.1+/-4.5 ms (R2* of 21.8+/-2.2 s(-1)) and an average increase (deltaT2* +/- SD) of 0.93+/-0.47 ms (deltaR2* of -0.4+/-0.14 s(-1)). Our findings demonstrate the usefulness of a multiple gradient echo data acquisition approach in separating various vascular contributions to brain activation in fMRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号