首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The discovery of tungsten enzymes and molybdenum/tungsten isoenzymes, in which the mononuclear catalytic sites contain a metal chelated by one or two pterin-dithiolene cofactor ligands, has lent new significance to tungsten-dithiolene chemistry. Reaction of [W(CO)(2)(S(2)C(2)Me(2))(2)] with RO(-) affords a series of square pyramidal desoxo complexes [W(IV)(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (1) and Pr(i)() (3). Reaction of 1 and 3 with Me(3)NO gives the cis-octahedral complexes [W(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (6) and Pr(i)() (8). These W(IV,VI) complexes are considered unconstrained versions of protein-bound sites of DMSOR and TMAOR (DMSOR = dimethylsulfoxide reductase, TMAOR = trimethylamine N-oxide reductase) members of the title enzyme family. The structure of 6 and the catalytic center of one DMSO reductase isoenzyme have similar overall stereochemistry and comparable bond lengths. The minimal oxo transfer reaction paradigm thought to apply to enzymes, W(IV) + XO --> W(VI)O + X, has been investigated. Direct oxo transfer was demonstrated by isotope transfer from Ph(2)Se(18)O. Complex 1 reacts cleanly and completely with various substrates XO to afford 6 and product X in second-order reactions with associative transition states. The substrate reactivity order with 1 is Me(3)NO > Ph(3)AsO > pyO (pyridine N-oxide) > R(2)SO > Ph(3)PO. For reaction of 3 with Me(3)NO, k(2) = 0.93 M(-)(1) s(-)(1), and for 1 with Me(2)SO, k(2) = 3.9 x 10(-)(5) M(-)(1) s(-)(1); other rate constants and activation parameters are reported. These results demonstrate that bis(dithiolene)W(IV) complexes are competent to reduce both N-oxides and S-oxides; DMSORs reduce both substrate types, but TMAORs are reported to reduce only N-oxides. Comparison of k(cat)/K(M) data for isoenzymes and k(2) values for isostructural analogue complexes reveals that catalytic and stoichiometric oxo transfer, respectively, from substrate to metal is faster with tungsten and from metal to substrate is faster with molybdenum. These results constitute a kinetic metal effect in direct oxo transfer reactions for analogue complexes and for isoenzymes provided the catalytic sites are isostructural. The nature of the transition state in oxo transfer reactions of analogues is tentatively considered. This research presents the first kinetics study of substrate reduction via oxo transfer mediated by bis(dithiolene)tungsten complexes.  相似文献   

2.
Although the kinetics and mechanism of metal-mediated oxygen atom (oxo) transfer reactions have been examined in some detail, sulfur atom (sulfido) transfer reactions have not been similarly scrutinized. The reactions [M(IV)(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-) + Ph(3)AsQ --> [M(VI)Q(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-) + Ph(3)As (M = Mo, W; Q = O, S) with variable substituent X' have been investigated in acetonitrile in order to determine the relative rates of oxo versus sulfido transfer at constant structure (square pyramidal) of the atom acceptor and of atom transfer at constant structure of the atom donor and metal variability of the atom acceptor. All reactions exhibit second-order kinetics and entropies of activation (-25 to -45 eu) consistent with an associative transition state. At parity of atom acceptor, k(2)(S) (0.25-0.75 M(-1)s(-1)) > k(2)(O) (0.023-0.060 M(-1)s(-1)) with M = Mo and k(2)(S) (4.1-66.7 M(-1)s(-1)) > k(2)(O) (1.8-9.8 M(-1)s(-1)) with M = W. At constant atom donor and X', k(2)(W) > k(2)(Mo) with reactivity ratios k(2)(W)/k(2)(Mo) = 78-184 (Q = O) and 16-89 (Q = S). Rate constants refer to 298 K. At constant M and Q, rates increase in the order X' = Me less, similar OMe < H < Br < COMe < CN; increasing electron-withdrawing propensity accelerates reaction rates. The probable transition state involves significant Ph(3)AsQ...M bond-making (X' rate trend) and concomitant As-Q bond weakening (bond energy order As-O > As-S). Orders of oxo and sulfido donor ability of substrates and complexes are deduced on the basis of qualitative reactivity properties determined here and elsewhere. This work complements previous studies of the reaction systems [M(IV)(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-)/XO where the substrates are N-oxides and S-oxides and k(2)(W) > k(2)(Mo) at constant substrate also applies. The reaction order of substrates is Me(3)NO > (CH(2))(4)SO > Ph(3)AsS > Ph(3)AsO. This research provides the first quantitative information of metal-mediated sulfido transfer.  相似文献   

3.
The active sites of the xanthine oxidase and sulfite oxidase enzyme families contain one pterin-dithiolene cofactor ligand bound to a molybdenum atom. Consequently, monodithiolene molybdenum complexes have been sought by exploratory synthesis for structural and reactivity studies. Reaction of [MoO(S(2)C(2)Me(2))(2)](1-) or [MoO(bdt)(2)](1-) with PhSeCl results in removal of one dithiolate ligand and formation of [MoOCl(2)(S(2)C(2)Me(2))](1-) (1) or [MoOCl(2)(bdt)](1-) (2), which undergoes ligand substitution reactions to form other monodithiolene complexes [MoO(2-AdS)(2)(S(2)C(2)Me(2))](1-) (3), [MoO(SR)(2)(bdt)](1-) (R = 2-Ad (4), 2,4,6-Pr(i)(3)C(6)H(2) (5)), and [MoOCl(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](1-) (6) (Ad = 2-adamantyl, bdt = benzene-1,2-dithiolate). These complexes have square pyramidal structures with apical oxo ligands, exhibit rhombic EPR spectra, and 3-5 are electrochemically reducible to Mo(IV)O species. Complexes 1-6 constitute the first examples of five-coordinate monodithiolene Mo(V)O complexes; 6 approaches the proposed structure of the high-pH form of sulfite oxidase. Treatment of [MoO(2)(OSiPh(3))(2)] with Li(2)(bdt) in THF affords [MoO(2)(OSiPh(3))(bdt)](1-) (8). Reaction of 8 with 2,4,6-Pr(i)(3)C(6)H(2)SH in acetonitrile gives [MoO(2)(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](1-) (9, 55%). Complexes 8 and 9 are square pyramidal with apical and basal oxo ligands. With one dithiolene and one thiolate ligand of a square pyramidal Mo(VI)O(2)S(3) coordination unit, 9 closely resembles the oxidized sites in sulfite oxidase and assimilatory nitrate reductase as deduced from crystallography (sulfite oxidase) and Mo EXAFS. The complex is the first structural analogue of the active sites in fully oxidized members of the sulfite oxidase family. This work provides a starting point for the development of both structural and reactivity analogues of members of this family.  相似文献   

4.
Novel molybdenum dithiolene compounds having neighboring amide groups as models for molybdoenzymes, (NEt(4))(2)[Mo(IV)O{1,2-S(2)-3,6-(RCONH)(2)C(6)H(2)}(2)] (R = CH(3), CF(3), t-Bu, Ph(3)C), were designed and synthesized. The contributions of the NH...S hydrogen bond to the electrochemical properties of the metal ion and the reactivity of the O-atom-transfer reaction were investigated by a comparison with [Mo(IV)O(1,2-S(2)C(6)H(4))(2)](2)(-). The MoOS(4) core of [Mo(IV)O{1,2-S(2)-3,6-(CH(3)CONH)(2)C(6)H(2)}(2)](2)(-) shows no significant geometrical difference from that of [Mo(IV)O(1,2-S(2)C(6)H(4))(2)](2)(-) in the crystal. The hydrogen bonds positively shifted the Mo(IV/V) redox potential and accelerated the reduction of Me(3)NO.  相似文献   

5.
Density functional calculations have been used to investigate oxygen atom transfer reactions from the biological oxygen atom donors trimethylamine N-oxide (Me(3)NO) and dimethyl sulfoxide (DMSO) to the molybdenum(IV) complexes [MoO(mnt)(2)](2-) and [Mo(OCH(3))(mnt)(2)](-) (mnt = maleonitrile-1,2-dithiolate), which may serve as models for mononuclear molybdenum enzymes of the DMSO reductase family. The reaction between [MoO(mnt)(2)](2-) and trimethylamine N-oxide was found to have an activation energy of 72 kJ/mol and proceed via a transition state (TS) with distorted octahedral geometry, where the Me(3)NO is bound through the oxygen to the molybdenum atom and the N-O bond is considerably weakened. The computational modeling of the reactions between dimethyl sulfoxide (DMSO) and [MoO(mnt)(2)](2-) or [Mo(OCH(3))(mnt)(2)](-) indicated that the former is energetically unfavorable while the latter was found to be favorable. The addition of a methyl group to [MoO(mnt)(2)](2-) to form the corresponding des-oxo complex not only lowers the relative energy of the products but also lowers the activation energy. In addition, the reaction with [Mo(OCH(3))(mnt)(2)](-) proceeds via a TS with trigonal prismatic geometry instead of the distorted octahedral TS geometry modeled for the reaction between [MoO(mnt)(2)](2-) and Me(3)NO.  相似文献   

6.
Jiang J  Holm RH 《Inorganic chemistry》2005,44(4):1068-1072
Kinetics of the oxygen atom transfer reactions [M(IV)(QC6H2-2,4,6-Pr(i)3)(S2C2Me2)2]1- + XO --> [M(VI)O(QC6H2-2,4,6-Pr(i)3)(S2C2Me2)2]1- + X in acetonitrile with substrates XO = NO3- and (CH2)4SO have been determined. The reactants are bis(dithiolene) complexes with M = Mo, W and sterically encumbered axial ligands with Q = O, S to stabilize mononuclear square pyramidal structures. The complex [MoIV(SC6H2-2,4,6-Pr(i)3)(S2C2Me2)2]1- is an analogue of the active site of dissimilatory nitrate reductase which in the reduced state contains a molybdenum atom bound by two pyranopterindithiolene ligands and a cysteinate residue. Nitrate reduction was studied with tungsten complexes because of unfavorable stability properties of the molybdenum complexes. Product nitrite was detected by a colorimetric method. All reactions with both substrates are second-order with associative transition states (deltaS approximately -20 eu). Variation of atoms M and Q, together with data from prior work, allows certain kinetics comparisons to be made. Among them, k2W/k2Mo = 25 for (CH2)4SO reduction (Q = S), an expression of the kinetic metal effect. Further, k2S/k2O = 28 and approximately 10(4) for nitrate and (CH2)4SO reduction, respectively, effects attributed to relatively more steric congestion in achieving the transition state with hindered phenolate vs thiolate ligands. The effect is more pronounced with the larger substrate. These results demonstrate the feasibility of tungsten-mediated nitrate reduction by direct atom transfer using molecules with both axial thiolate and phenolate ligands. Complexes of the type [M(IV)(OR)(S2C2Me2)2] are capable of reducing biological N-oxide, S-oxide, and nitrate substrates and thus constitute functional analogue reaction systems of enzymic transformations.  相似文献   

7.
Mo(VI)(S(2)C(6)H(4))(3) reacts cleanly and completely with H(2)O in THF to afford [H(3)O](+)[Mo(V)(S(2)C(6)H(4))(3)](-). Kinetic data were fit by the rate equation -d[Mo(VI)(S(2)C(6)H(4))(3)]/dt = k[Mo(VI)(S(2)C(6)H(4))(3)]/[H(3)O(+)], which is consistent with a coupled electron-proton transfer mechanism involving a coordinated H(2)O molecule. The Mo(VI)(S(2)C(6)H(4))(3) reduction is accelerated by the presence of PPh(3) and affords OPPh(3). (18)O isotope tracing shows that H(2)O is the source of oxygen transferred to PPh(3).  相似文献   

8.
Reaction between the Os(VI)-hydrazido complex, trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (tpy = 2,2':6',2"-terpyridine and O(CH(2))(4)N(-) = morpholide), and a series of N- or O-bases gives as products the substituted Os(VI)-hydrazido complexes, trans-[Os(VI)(4'-RNtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) or trans-[Os(VI)(4'-ROtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (RN(-) = anilide (PhNH(-)); S,S-diphenyl sulfilimide (Ph(2)S=N(-)); benzophenone imide (Ph(2)C=N(-)); piperidide ((CH(2))(5)N(-)); morpholide (O(CH(2))(4)N(-)); ethylamide (EtNH(-)); diethylamide (Et(2)N(-)); and tert-butylamide (t-BuNH(-)) and RO(-) = tert-butoxide (t-BuO(-)) and acetate (MeCO(2)(-)). The rate law for the formation of the morpholide-substituted complex is first order in trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) and second order in morpholine with k(morp)(25 degrees C, CH(3)CN) = (2.15 +/- 0.04) x 10(6) M(-)(2) s(-)(1). Possible mechanisms are proposed for substitution at the 4'-position of the tpy ligand by the added nucleophiles. The key features of the suggested mechanisms are the extraordinary electron withdrawing effect of Os(VI) on tpy and the ability of the metal to undergo intramolecular Os(VI) to Os(IV) electron transfer. These substituted Os(VI)-hydrazido complexes can be electrochemically reduced to the corresponding Os(V), Os(IV), and Os(III) forms. The Os-N bond length of 1.778(4) A and Os-N-N angle of 172.5(4) degrees in trans-[Os(VI)(4'-O(CH(2))(4)Ntpy)(Cl)(2)(NN(CH(2))(4)O)](2+) are consistent with sp-hybridization of the alpha-nitrogen of the hydrazido ligand and an Os-N triple bond. The extensive ring substitution chemistry implied for the Os(VI)-hydrazido complexes is discussed.  相似文献   

9.
The anions [M(VI)O(O(2))(2)(OR)](-) and [M(VI)O(3)(OR)](-)(M = Cr, Mo, W; R = H, Me, Et, (n)Pr, (i)Pr) were transferred to the gas phase by the electrospray process. Their decomposition was examined by multistage mass spectrometry and collisional activation experiments. The molybdate and tungstate anions [M(VI)O(O(2))(2)(OR)](-) underwent parallel elimination of aldehyde (ketone) and dioxygen while the equivalent chromate underwent loss of dioxygen only. The peroxo ligands were the source of oxidising equivalents in both reactions. For each alkoxo ligand, the total yield of aldehyde for the tungstate system exceeded that for the molybdate system. Collisional activation of [M(VI)O(3)(OMe)](-) led to clean elimination of formaldehyde with the metal centre supplying the oxidising equivalents. For larger alkoxo ligands, only the chromate centre eliminated aldehyde, while the molybdate and tungstate centres underwent clean loss of alkene. Threshold activation voltages indicated that the peroxo ligands of [W(VI)O(O(2))(2)(OMe)](-) are more oxidising than the tungstate centre of [W(VI)O(3)(OMe)](-). (2)H and (18)O isotope tracing experiments were consistent with a formal hydride transfer mechanism operating for oxidation of alkoxo ligand in each system. In the solid state, anions [M(VI)O(O(2))(2)(OR)](-) are typically pentagonal pyramidal (oxo in apical site) while [M(VI)O(3)(OR)](-) are tetrahedral. The data indicate that an equatorial ligand position is the site of alkoxo oxidation in [M(VI)O(O(2))(2)(OR)](-) anions. Comparisons of the gas phase data with those for a solution phase system are made.  相似文献   

10.
The U(IV) linear pentacyano metallocene [U(C(5)Me(5))(2)(CN)(5)][NEt(4)](3) reacted with 2 molar equivalents of pyridine N-oxide in THF or acetonitrile to give the U(VI) complex [UO(2)(C(5)Me(5))(CN)(3)][NEt(4)](2), the first uranyl species containing the cyclopentadienyl ligand; the crystal structure revealed that the steric effects of the (C(5)Me(5)) ligand force the {UO(2)}2+ ion to deviate from linearity.  相似文献   

11.
Jiang J  Holm RH 《Inorganic chemistry》2004,43(4):1302-1310
The active sites of tungstoenzymes have the formulations W(IV,V)L(S(2)pd)(2) and W(VI)LL'(S(2)pd)(2), in which two pyranopterindithiolene cofactor ligands (S(2)pd) are chelated to a tungsten atom. Ligands L and/or L' are not fully defined in any wild-type enzyme. The feasibility of various coordination fragments (functional groups) in potential bis(dithiolene)tungsten site analogues has been examined in previous work by exploratory synthesis. This investigation expands the range of accessible functional groups. The synthetic scheme originates with [W(CO)(2)(S(2)C(2)Me(2))(2)], whose carbonyl groups are labile to substitution. Complexes [W(IV,VI)LL'(S(2)C(2)Me(2))(2)](1-) are described in terms of their functional groups W(IV,VI)LL'. Reaction of the dicarbonyl with formate in acetonitrile/THF affords W(IV)(CO)(eta(1)-HCO(2)) (4) and in Me(2)SO W(VI)O(eta(1)-HCO(2)) (7) by an oxo transfer reaction. Carboxylates yield six-coordinate W(IV)(eta(2)-O(2)CR) (1-3, R = Ph, Me, Bu(t)) with C(2)(v) symmetry. Reaction of 3 (R = Bu(t)) with Me(3)SiSR (R = C(6)H(2)-2,4,6-Pr(i)(3)) gives W(IV)(SR) (5), which undergoes oxo and sulfido atom transfer to form W(VI)O(SR) (8) and W(VI)S(SR) (9), respectively. Attempts to prepare corresponding selenolate complexes, pertinent to the active site of formate dehydrogenase, were unsuccessful, including reactions of W(VI)OCl (10) with RSe(-). Structure proofs of 2-10 were obtained by X-ray structure determinations. Some 26 functional group types in bis(dithiolene)W(IV,V,VI) molecules have now been achieved by synthesis. It remains to be seen which are incorporated in an enzyme site. A number of them (e.g., 5) are directly analogous to molybdoenzyme sites, and may possess corresponding reactivity with biological substrates, as do W(IV)(OR)/W(VI)O(OR) (prepared earlier) in the reduction of N- and S-oxides by atom transfer.  相似文献   

12.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

13.
Yuan M  Li Y  Wang E  Tian C  Wang L  Hu C  Hu N  Jia H 《Inorganic chemistry》2003,42(11):3670-3676
Three novel polyoxometalate derivatives decorated by transition metal complexes have been hydrothermally synthesized. Compound 1 consists of [PMo(VI)(6)Mo(V)(2)V(IV)(8)O(44)[Co (2,2'-bipy)(2)(H(2)O)](4)](3+) polyoxocations and [PMo(VI)(4-)Mo(V)(4)V(IV)(8)O(44)[Co(2,2'-bipy)(2)(H(2)O)](2)](3-) polyoxoanions, which are both built on mixed-metal tetracapped [PMo(8)V(8)O(44)] subunits covalently bonded to four or two [Co(2,2'-bpy)(2)(H(2)O)](2+) clusters via terminal oxo groups of the capping V atoms. Compound 2 is built on [PMo(VI)(8)V(IV)(6)O(42)[Cu(I)(phen)](2)](5-) clusters constructed from mixed-metal bicapped [PMo(VI)(8)V(IV)(6)O(42)](7-) subunits covalently bonded to two [Cu(phen)](+) fragments in the similar way to 1. The structure of 3 is composed of [PMo(VI)(9)Mo(V)(3)O(40)](6-) units capped by two divalent Ni atoms via four bridging oxo groups. The crystal data for these are the following: C(120)H(126)Co(6)Mo(16)N(24)O(103)P(2)V(16) (1), triclinic P1, a = 15.6727(2) A, b = 17.3155(3) A, c = 19.5445(2) A, alpha = 86.1520(1) degrees, beta = 81.2010(1) degrees, gamma = 63.5970(1) degrees, Z = 1; C(120)H(85)Cu(6-)Mo(8)N(20)O(44)PV(6) (2), triclinic P1, a = 14.565(4) A, b = 15.899(3) A, c = 16.246(4) A, alpha = 116.289(2) degrees, beta = 103.084(2) degrees, gamma = 94.796(2) degrees, Z = 1; C(60)H(40)Mo(12)N(10)Ni(3)O(40)P (3), monoclinic P2(1)/c, a = 14.804(3) A, b = 22.137(4) A, c = 25.162(5) A, alpha = 90 degrees, beta = 98.59(3) degrees, gamma = 90 degrees, Z = 4.  相似文献   

14.
15.
We report the syntheses and characterizations of the first polyoxothiometalate complexes isolated from the reaction of the oxothiocationic [Mo(V)(2)O(2)S(2)](2+) precursor and bisphosphonate ligands H(2)O(3)PCR(OH)PO(3)H(2) (R = C(4)H(5)N(2), zoledronic acid; R = C(3)H(6)NH(2), alendronic acid). [(Mo(2)O(2)S(2)(H(2)O))(4)(O(3)PC(O)(C(4)H(6)N(2))PO(3))(4)](8-) (Mo(8)S(8)(Zol)(4)) and [(Mo(2)O(2)S(2)(H(2)O))(4)(O(3)PC(O)(C(3)H(6)NH(3))PO(3))(4)](8-) (Mo(8)S(8)(Ale)(4)) contain four Mo(V) dimers connected via bisphosphonate ligands. These compounds offer a unique opportunity to compare the structures and properties of cyclic compounds obtained with [Mo(2)O(2)S(2)](2+) and with [Mo(2)O(4)](2+). The oxothio compounds appear less stable in solution than the oxo analogue, confirming the higher lability and versatility of [Mo(2)O(2)S(2)]-based compounds compared to [Mo(2)O(4)]-based POMs. Multinuclear and multidimensional solid-state NMR studies were carried out to complement X-ray diffraction analysis. Information on short-range interactions, dynamic behaviors, and local disorder within the crystalline materials are therefore reported. Furthermore, the electrocatalytic properties of Mo(8)S(8)(Ale)(4) and of the analogous [(Mo(2)O(4)(H(2)O))(4)(O(3)PC(O)(C(3)H(6)NH(3))PO(3))(4)](8-) (Mo(8)O(8)(Ale)(4)) immobilized onto the surface of a glassy carbon electrode were studied, thus evidencing the ability of [Mo(2)O(2)S(2)]-based cycles to promote the reduction of protons into hydrogen, whereas the oxo analogue appeared inactive.  相似文献   

16.
Reaction of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) in the mixed-solvent system H(2)O/CH(3)CN (pH = 5) resulted in the formation of the tetranuclear cluster (NH(4))(4)[Mo(4)(VI)SO(16)] x H(2)O (1), while the same reaction in acidic aqueous solution (pH = 5) yielded (NH(4))(4)[Mo(5)(VI)S(2)O(21)] x 3H(2)O (2). Compound {(H(2)bipy)(2)[Mo(5)(VI)S(2)O(21)] x H(2)O}(x) (3) was obtained from the reaction of aqueous acidic solution of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) (pH = 2.5) and 4,4'-bipyridine (4,4'-bipy). The mixed metal/sulfite species (NH(4))(7)[Co(III)(Mo(2)(V)O(4))(NH(3))(SO(3))(6)] x 4H(2)O (4) was synthesized by reacting Na(2)Mo(VI)O(4) x 2H(2)O with CoCl(2) x 6H(2)O and (NH(4))(2)SO(3) with precise control of pH (5.3) through a redox reaction. The X-ray crystal structures of compounds 1, 2, and 4 were determined. The structure of compound 1 consists of a ring of four alternately face- and edge-sharing Mo(VI)O(6) octahedra capped by the trigonal pyramidal sulfite anion, while at the base of the Mo(4) ring is an oxo group which is asymmetrically shared by all four molybdenum atoms. Compound 3 is based on the Strandberg-type heteropolyion [Mo(5)(VI)S(2)O(21)](4-), and these coordinatively saturated clusters are joined by diprotonated 4,4'-H(2)bipy(2+) through strong hydrogen bonds. Compound 3 crystallizes in the chiral space group C2. The structure of compound 4 consists of a novel trinuclear [Co(III)Mo(2)(V)SO(3)(2-)] cluster. The chiral compound 3 exhibits nonlinear optical (NLO) and photoluminescence properties. The assignment of the sulfite bands in the IR spectrum of 4 has been carried out by density functional calculations. The cobalt in 4 is a d(6) octahedral low-spin metal atom as it was evidenced by magnetic susceptibility measurements, cw EPR, BVS, and DFT calculations. The IR and solid-state UV-vis spectra as well as the thermogravimetric analyses of compounds 1-4 are also reported.  相似文献   

17.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

18.
Substitution of a methyl by a trifluoromethyl moiety in well-known β-ketimines afforded the ligands (Ar)NC(Me)CH(2)CO(CF(3)) (HL(H), Ar = C(6)H(5); HL(Me), A r= 2,6-Me(2)C(6)H(3); HL(iPr), Ar = 2,6-(i)Pr(2)C(6)H(3)). Subsequent complexation to the [MoO(2)](2+) core leads to the formation of novel complexes of general formula [MoO(2)(L(R))(2)] (R = H, 1; R = Me, 2; R = iPr, 3). For reasons of comparison the oxo-imido complex [MoO(N(t)Bu)(L(Me))(2)] (4) has also been synthesized. Complexes 1-4 were investigated in oxygen atom transfer (OAT) reactions using the substrate trimethylphosphine. The respective products after OAT, the reduced Mo(IV) complexes [MoO(PMe(3))(L(R))(2)] (R = H, 5; R = Me, 6; R = iPr, 7) and [Mo(N(t)Bu)(PMe(3))(L(Me))(2)] (8), were isolated. All complexes have been characterized by NMR spectroscopy, and 1-4 also by cyclic voltammetry. A positive shift of the Mo(VI)-Mo(V) reduction wave upon fluorination was observed. Furthermore, molecular structures of complexes 2, 4, 5, and 8 have been determined via single crystal X-ray diffraction analysis. Complex 8 represents a rare example of a Mo(IV) phosphino-imido complex. Kinetic measurements by UV-vis spectroscopy of the OAT reactions from complexes 1-4 to PMe(3) showed them to be more efficient than previously reported nonfluorinated ones, with ligand L' = (Ar)NC(Me)CH(2)CO(CH(3)) [MoO(2)(L')(2)] (9) and [MoO(N(t)Bu)(L')(2)] (10), respectively. Thermodynamic activation parameters ΔH(?) and ΔS(?) of the OAT reactions for complexes 2 and 4 have been determined. The activation enthalpy for the reaction employing 2 is significantly smaller (12.3 kJ/mol) compared to the reaction with the nonfluorinated complex 9 (60.8 kJ/mol). The change of the entropic term ΔS(?) is small. The reaction of the oxo-imido complex 4 to 8 revealed a significant electron-donating contribution of the imido substituent.  相似文献   

19.
J Seo  E Kim 《Inorganic chemistry》2012,51(15):7951-7953
Inspired by the CO(2)-reductatse activity of tungsten-dependent formate dehydrogenases (W-FDHs), a reduced W-FDH model, [W(IV)(OH)(S(2)C(2)Ph(2))(2)](-), was prepared in situ through hydrolysis of [W(IV)(OPh)(S(2)C(2)Ph(2))(2)](-) (1) and its reactivity with CO(2) was investigated. The reaction between [W(IV)(OH)(S(2)C(2)Ph(2))(2)](-) and CO(2) at room temperature leads to the formation of [W(IV)(O)(S(2)C(2)Ph(2))(2)](2-) (2), which slowly oxidizes to [W(V)(O)(S(2)C(2)Ph(2))(2)](-) (3). Isotopic labeling experiments reveal that the O atom in CO(2) incorporates into 3. This implies that there is carbonic anhydrase like activity, in which carbonation and decarboxylation are mediated by a bis(dithiolene)tungsten complex.  相似文献   

20.
Jancik V  Roesky HW 《Inorganic chemistry》2005,44(16):5556-5558
Deprotonation of an Al-SH moiety has been achieved easily by using N-heterocyclic carbene as the base. Monomeric mono- and bis-imidazolium salts [C(t)H(+)][LAl(SH)(S)](-) ([C(t)H(+)] = N,N'-bis-tert-butylimidazolium), [C(m)H(+)][LAl(SH)(S)](-), and [C(m)H(+)](2)[LAl(S)(2)](2-) ([C(m)H(+)] = N,N'-bismesitylimidazolium), containing unusual anions [LAl(SH)(S)](-) and [LAl(S)(2)](2-), have been synthesized in nearly quantitative yields. Furthermore, [C(m)H(+)](2)[LAl(S)(2)](2-) has been successfully used for the preparation of LAl(SSiMe(2))(2)O containing the [O(Me(2)SiS)(2)](2-) ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号