首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of magnetically-separable nanocatalyst was prepared through the immobilization of phosphomolybdic acid (H3PMo12O40) in 10–30 wt.% on the surface of core-shell zirconia-coated magnetite nanoparticle (nano-Fe3O4@ZrO2). The developed heterogeneous nano-sized acid catalyst named nano-Fe3O4@ZrO2 supported PMA (or n-Fe3O4@ZrO2/PMA) was characterized using several techniques such as FT-IR, XRD, FE-SEM, VSM, EDX, TEM and TGA. The characterization data derived from FT-IR spectroscopy exhibited that H3PMo12O40 species on the support retained their Keggin structures. Additionally, the potentiometric titration with n-butylamine was employed to measure the acidity content of the as-obtained catalyst. Surprisingly, this novel active solid acid catalyst displayed to have a higher number of surface active sites compared to its homogeneous analogues. Besides, the catalytic activity of the catalyst was evaluated in multicomponent reactions (MRCs) for the rapid and efficient one-pot synthesis of 2, 4, 5-trisubstituted and 1, 2, 4, 5-tetrasubstituted imidazoles in high yields and selectivity. The sample of 20 wt.% displayed higher acidity content which led to its enhanced activity in the catalytic transformation. Moreover, the catalyst could be easily reused without deactivation after five runs, which made it a promising catalyst for practical and large-scale applications. This outstanding reusability was ascribed to the strong attachment of PMA molecules on the n-Fe3O4@ZrO2 support material.  相似文献   

2.
In this work, a new Fe3O4/AlFe/Te nanocomposite was synthesized by a one‐step sol–gel method. The Fe3O4 magnetic nanoparticles (MNPs) were prepared and then mixed with aluminum telluride (Al2Te3) in an alkali medium to produce the desired catalyst. After characterization of the Fe3O4/AlFe/Te nanocomposite by SEM, TEM, EDS, XRD, and ICP analyses, it was used in the esterification reaction. This heterogeneous catalyst showed high catalytic activity in the esterification of commercially available carboxylic acids with various alcohols to produce the desired esters at high conversions under neat conditions. The Fe3O4/AlFe/Te nanocomposites were separated from the reaction mixture via an external magnet and re‐used 8 times without significant loss of catalytic activity.  相似文献   

3.
Graphene-Fe3O4 nanocomposite(G-Fe3O4) was synthesized by a chemical co-precipitation method which was used as an efficient catalyst for the reduction of nitroarenes with hydrazine hydrate.The method has been applied to a broad range of compounds with different properties and the yields were in the range of 75%-92%.The G-Fe3O4 catalyst can be readily recovered and reused 5 times without significant loss of the catalytic activity.  相似文献   

4.
A magnetically separable graphitic carbon nitride nanocomposite (Fe3O4/g‐C3N4) as a catalyst for the three‐component condensation reactions of carbonyl compounds, amines and trimethylsilylcyanide was thoroughly investigated. The reaction of these three components was found to be efficient, economical and green and took place in the presence of a catalytic amount of the magnetically separable catalyst to yield the corresponding α‐aminonitriles in good to excellent yields. The prepared nanocomposite was characterized using scanning electron microscopy and energy‐dispersive X‐ray and Fourier transform infrared spectroscopies. The nanocomposite was also found to be reusable could be recovered easily and reused several times without distinct deterioration in its catalytic activity.  相似文献   

5.
Antibacterial materials have obtained much attention in recent years due to the presence of hazardous agents causing oxidative stress and observation of pathogens. However, materials with antioxidant and antibacterial activities can cause toxicity due to their low biocompatibility and safety profile, urging scientists to follow new ways in the synthesis of such materials. Ionic liquids have been employed as a green and environmentally solvent for the fabrication of electrically conductive polymers. In the present study, an antibacterial poly(p-phenylenediamine)@Fe3O4 (PpPDA@Fe3O4) nanocomposite was fabricated using [HPy][HSO4] ionic liquid. The chemical preparation of PpPDA@Fe3O4 nanocomposite was initiated through the oxidative polymerization of p-phenylenediamine by ammonium persulfate in the presence of [HPy][HSO4]. The PpPDA@Fe3O4 nanocomposite exhibited antibacterial properties against Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria. The PpPDA@Fe3O4 nanocomposite was employed as a heterogeneous nanocatalysis for one-pot synthesis of polyhydroquinoline derivatives using aromatic aldehyde, dimedone, benzyl acetoacetate, and ammonium acetate. Polyhydroquinoline derivatives were synthesized in significant yields (90–97%) without a difficult work-up procedure in short reaction times. Additionally, PpPDA@Fe3O4 nanocatalyst was recycled for at least five consecutive catalytic runs with a minor decrease in the catalytic activity. In this case, 11 derivatives of polyhydroquinoline showed in vitro antioxidant activity between 70–98%.  相似文献   

6.
In recent years, there is a high demand on utilizing heterogeneous nanocatalysts in organic synthetic routes because of their green approach, facile purification of the products, and reusability of the catalyst. Herein, we introduced trihydrazinotriazine (THDT)-coated Fe3O4@SiO2 as a novel amino-functionalized magnetic nanocompostie. We fully characterized the nanocatalyst and proved the morphology and magnetic property of the nanoparticles by using essential analyses. The basic attribute of the amino-rich porous surface of the nanocomposite provides a desirable environment for enhancing various reaction conditions. To examine the applicability of the nanocatalyst in organic reactions, we synthesized several benzoxanthenes using Fe3O4@SiO2-THDT nanocatalysts. The nanocomposite successfully improved the reaction conditions and provided the benzoxanthenes in an environmentally friendly procedure, which afforded product in excellent yields (80–96%) and reduced time. The nanomagnetic catalyst was easily recovered after each trial by using an external magnet. After six successive runs, the loss of catalytic activity of the nanocomposite was negligible. Finally, we propounded a plausible mechanism for the preparation of the benzoxanthenes derivatives using the THDT-functionalized core-shell magnetic nanocatalyst.  相似文献   

7.
A core–shell Fe3O4@silica magnetic nanocomposite functionalized with 3-amino-5-mercapto-1,2,4-triazole (Fe3O4/SiO2/PTS/AMTA) was prepared using Fe3O4 with silica layer, and its surface was modified with 3-amino-5-mercapto-1,2,4-triazole. The novel synthesized magnetite nanocomposite was characterized using various techniques. The catalytic activity of Fe3O4/SiO2/PTS/AMTA was demonstrated in the synthesis of bis(indolyl)methane derivatives under solvent-free conditions. Some of the bis(indolyl)methane derivatives were synthesized through one-pot, three-component reaction of 1 mol of various benzaldehydes or ketones with 2 mol of indole in the presence of Fe3O4/SiO2/PTS/AMTA in good to excellent isolated yields. In addition, the catalyst could be recovered and used for several reaction runs without loss of catalytic activity. The stability of recycled catalyst was investigated. This method has some advantages including experimental simplicity, good to excellent yields, solvent-free conditions and stability and reusability of the catalyst.  相似文献   

8.
We report a new strategy to immobilize a bromine source on the surface of magnetic Fe3O4 nanoparticles (Fe3O4 MNPs-DETA/Benzyl-Br3) leading to a magnetically recoverable catalyst, which exhibits high catalytic efficiency in oxidative coupling of thiols to the disulfides (89–98%). The Fe3O4 MNPs-DETA/Benzyl-Br3 catalyst was fabricated by anchoring 3-chloropropyltrimethoxysilane (CPTMS) on magnetic Fe3O4 nanoparticles, followed with N-benzylation and reaction with bromine in tetrachloridecarbon. The resulting nanocomposite was analyzed by a series of characterization techniques such as FT-IR, SEM, TGA, VSM and XRD. The catalyst could be recovered via magnetic attraction and could be recycled at least 5 times without appreciable decrease in activity.  相似文献   

9.
An amino‐functionalized silica‐coated Fe3O4 nanocomposite (Fe3O4@SiO2/APTS) was synthesized. The Fe3O4@SiO2 microspheres possessed a well‐defined core–shell structure, uniform sizes and high magnetization. An immobilized ruthenium nanoparticle catalyst (Fe3O4@SiO2/APTS/Ru) was obtained after coordination and reduction of Ru3+ on the Fe3O4@SiO2/APTS nanocomposite. The Ru nanoparticles were not only ultra‐small with nearly monodisperse sizes but also had strong affinity with the surface of Fe3O4@SiO2/APTS. The obtained catalyst exhibited excellent catalytic performance for the hydrogenation of a variety of aromatic nitro compounds, even at room temperature. Moreover, Fe3O4@SiO2/APTS/Ru was easily recovered using a magnetic field and directly reused for at least five cycles without significant loss of its activity.  相似文献   

10.
One step solvothermal route has been developed to prepare a well dispersed magnetically separable palladium–graphene nanocomposite, which can act as a unique catalyst against hydrogenation due to the uniform decoration of palladium nanoparticles throughout the surface of the magnetite–graphene nanocomposite and hence can be reused for several times. In addition to catalytic activity, palladium nanoparticles also facilitate the formation and homogeneous distribution of magnetite (Fe3O4) nanoparticles onto the graphene surfaces or else an agglomerated product has been obtained after the solvothermal reduction of graphene oxide in presence of Fe3+ alone.  相似文献   

11.
《Comptes Rendus Chimie》2014,17(9):958-963
An efficient and facile air oxidation of benzoins in the presence of the heterogeneous catalyst, Co3O4–CNTs nanocomposite, has been developed. It thus constitutes a very simple, clean, economical and selective method for the aerobic preparation of benzils from the corresponding benzoins. The catalyst can be re-used a number of times without losing its catalytic activity to a greater extent.  相似文献   

12.
In this work, the use of Fe3O4/geraphene oxide nanocomposite as an efficient catalyst for the synthesis of 5-sulfanyltetrazole derivatives of indoles, pyrroles, and 5-alkyl sulfanyltetrazoles is described. These compounds are readily obtained by the reaction of the starting heterocycles indoles, N-aryl pyrroles, alkyl thiocyanates, and trimethylsilyl azide in good to excellent yields. Moreover, Fe3O4/GO nanocomposite could be easily separated from the reaction mixtures by an external permanent magnet and reused at least six times continuously without significant reduction in the product yield and its catalytic activity.  相似文献   

13.
We report an efficient kinetic resolution of racemic 2-(4-chlorophenyl)-4-hydroxytetrahydro-pyran (CLP-4-HTHP) via Pseudomonas cepacia lipase (PSL)-catalyzed transesterification, where PSL is immobilized on a core-shell MnFe204@SiO2-(CH2)3-NH2 carrier and used as a magnetically separable catalyst. The as-synthesized PSL/MnFe204@SiO2-(CH2)3-NH2 catalyst exhibits enhanced catalytic activity for resolving racemic CLP-4-HTHP to the corresponding optically pure (2R,4S)-CLP-4-HTHP compared to the free PSL. The ees for the former is 2.3 times larger than that for the latter under optimized conditions (99.4% and 44.1%, respectively), although the eep for them are same (99.2%). Meanwhile, the PSL/MnFe204@SiO2-(CH2)3-NH2 catalyst possesses a high saturate magnetization of 59.7 emu/g and could be easily recovered by magnetic separation and reused. The catalytic activity in six recycling tests did not significantly decrease, suggesting its great potential for industrial applications.  相似文献   

14.
A ZnAl2O4@SiO2 nanocomposite was prepared from metal nitrates and tetraethyl orthosilicate by the sol-gel process, and characterized by X-ray diffraction, Fourier transform infrared, transmission electron microscopy, and N2 adsorption-desorption measurements. The nanocomposite was tested as a heterogeneous catalyst for the acetylation of alcohols, phenols, and amines under solvent-free conditions. Under optimized conditions, efficient acetylation of these substrates with acetic anhydride over the ZnAl2O4@SiO2 nanocomposite was obtained. Acetylation of anilines and primary aliphatic amines proceeded rapidly at room temperature, while the reaction time was longer for the acetylation of alcohols and phenols, showing that an amine NH2 group can be selectively acetylated in the presence of alcoholic or phenolic OH groups. The catalyst can be reused without obvious loss of catalytic activity. The catalytic activity of the ZnAl2O4@SiO2 nanocomposite was higher than that of pure ZnAl2O4. The method gives high yields, and is clean, cost effective, compatible with substrates having other functional groups and it is suitable for practical organic synthesis.  相似文献   

15.
An efficient three‐component reaction of aromatic aldehydes, 6‐aminouracil/6‐amino‐1,3‐dimethyluracil and 4‐hydroxycoumarin in the presence of a novel heterogeneous catalyst H3PMo12O40‐immobilized Co3O4/chitosan led to a synthesis of a new class of pyrimidinedione derivatives under reflux conditions. The magnetically recoverable nanocomposite of Co3O4/chitosan/H3PMo12O40 was fully characterized by Fourier transform‐infrared spectrophotometry, scanning electron microscopy, X‐ray powder diffraction, energy‐dispersive X‐ray spectroscopy, vibrating‐sample magnetometry and N2 adsorption–desorption by Brunauer–Emmett–Teller analysis. Results show that Keggin‐type 12‐molybdophosphoric acid immobilized into the network of the cross‐linked chitosan with super‐paramagnetic Co3O4 nanoparticles. The present method offers several advantages, such as simple procedure, short reaction times and excellent yields of products. The novelty of the catalyst, high catalytic activity, easy separation from the reaction with an external magnetic field and reusability of the catalyst in six consecutive runs are additional eco‐friendly attributes of this catalytic system.  相似文献   

16.
A nanocomposite was synthesized using carbon‐coated Fe3O4 nanoparticle‐decorated reduced graphene oxide as a convenient and efficient supporting material for grafting of a manganese–reduced Schiff base (salan) complex via covalent attachment. The nanocomposite was characterized using X‐ray diffraction, Fourier transform infrared and diffuse reflectance UV–visible spectroscopies, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy. It was evaluated as a catalyst for the aerobic epoxidation of olefins in acetonitrile in combination with a sacrificial co‐reductant (isobutyraldehyde). The catalytic performance of the heterogeneous system of the Mn–salan complex is superior to that of the homogeneous one. The catalyst activity strongly depends on the reaction temperature and nature of the solvent. The epoxide yield increases with the nucleophilic character of the olefin. The nanocomposite performs well as an epoxidation catalyst for electron‐rich and conjugated olefins. It can be recovered from the reaction medium by magnetic decantation and reused, maintaining good catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The strategy of structurally integrating noble metal and metal oxides is expected to offer exceptional opportunities toward emerging functions of all. We report the creation of an efficient hetero-structured nanocatalyst consisting of Mn3O4 core, SiO2 shell impregnated with noble Ag nanoparticles. The triple nanocatalyst Mn3O4/Ag/SiO2 was synthesized by using a facile three-step approach to disperse Ag nanoparticles between the surfaces of functionalized Mn3O4 and SiO2. The physicochemical structural characterization was performed by XRD and FTIR. The surface morphologies were observed by SEM and TEM. The EDX measurements confirmed the composition of the composite. The nanocomposite has been used as a catalyst for the degradation of Direct blue 78 in the presence of sodium borohydride (NaBH4). It has a drastic catalytic effect as compared to Mn3O4/Ag and Mn3O4. The rate constant of Direct blue 78 reduction followed the order: Mn3O4/Ag/SiO2 (0.25166 min−1) > Mn3O4/Ag (0.07971 min−1) > Mn3O4 (0.00947 min−1). The effects of different reaction conditions of the catalytic reaction have been determined. The catalytic activity of the as- synthesized nanocomposite was examined for the binary dyes system by incorporation of an additional dye (Sunset yellow). Its influence on the degradation rate and efficiency of Direct blue 78 was investigated. The nanocatalyst exhibited excellent catalytic activity towards the complete degradation of both the Direct blue 78 and Sunset yellow. The degradation percentage for these dyes reached 99.33 and 94.68%, respectively. The recovery and reusability of the Mn3O4/Ag/SiO2 nanocomposite was studied in the reduction reaction of Direct blue 78. Five consecutive recovery reaction cycles were performed. They revealed high stability and constant efficiency of the catalyst for four cycles.  相似文献   

18.
An environmentally benign magnetic silica‐based nanocomposite (Fe3O4/SBA‐15) as a heterogeneous nanocatalyst was prepared and characterized using Fourier transform infrared and ultraviolet–visible diffuse reflectance spectroscopies, scanning electron microscopy, X‐ray diffraction, vibrating sample magnetometry and Brunauer–Emmett–Teller multilayer nitrogen adsorption. Its catalytic activity was investigated for the one‐pot multicomponent synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones starting from isatoic anhydride, ammonium acetate and various aldehydes under mild reaction conditions and easy work‐up procedure in refluxing ethanol with good yields. The nanocatalyst can be recovered easily and reused several times without significant loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, a carbon-supported KOH/Ca12Al14O33 nanocomposite was fabricated via the microwave combustion method, in which dextrose was used as a carbon source, and its activity in the microwave-assisted transesterification reaction as a microwave absorption material was assessed. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry, Brunauer–Emmett–Teller (BET), field-emission scanning electron microscopy, and energy dispersive X-ray analyses. The results showed that the carbonate and noncarbonate samples had a calcium aluminate (Ca12Al14O33) structure as a support. Different carbon groups were formed during preparation of the carbon-supported KOH/Ca12Al14O33 nanocomposite, which improved its surface area and porosity. Although the samples presented similar basicity, the carbonated nanocomposite exhibited twice as much activity as the KOH/Ca12Al14O33 nanocatalyst for conversion of canola oil to biodiesel in the microwave-assisted transesterification reaction at 270 W microwave power. The nanocomposite with a larger pore size made active sites easily accessible and exhibited higher catalytic ability where the conversion of 98.8% was obtained under the optimized conditions of 270 W microwave power, methanol/oil molar ratio of 15, 4 wt% of the nanocomposite, and 30 min of reaction time. The carbon-supported nanocatalyst can be reused for at least four times with less reduction in activity. Furthermore, the obtained biodiesel showed that it met the standard values (EN 14214 and ASTM D-6751) with respect to the density, kinematic viscosity at 40 °C, acid number, and flash point.  相似文献   

20.
In this study, an eco-friendly and low-cost procedure for the synthesis of White tea plant extract modified magnetic nanocomposite (Fe3O4@W.tea) has been demonstrated. Ag nanoparticles (Ag NPs) were further decorated in situ over the designed Fe3O4@W.tea nanocomposite exploiting the plant derived phytochemicals as bio-reductant and stabilizer. The resulting Fe3O4@W.tea/Ag nanocomposite was characterized by various analytical methods like Fourier Transformed Infra Red (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), energy dispersive X-ray analysis (EDX) elemental mapping, transmission electron microscopy (TEM), vibrating-sample magnetometer (VSM), X-ray diffraction analysis (XRD), and inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis. The as-synthesized bio-nanomaterial was used as an excellent heterogeneous and magnetically retrievable catalyst in the three-component condensation of 4-hydroxycoumarin, malononitrile and various aldehydes in refluxing aqueous media. A broad range of aromatic aldehydes underwent the reaction to produce diverse pyrano[3,2-c]chromene derivatives in very good yields irrespective of the nature of bearing functional groups or their respective geometrical positions. Due to superparamagnetic character, the material was easily magnetically decanted out and recycled for 8 successive times with preservation of its catalytic activity. After the chemical applications we also explored the material biologically in the resistance of human colon cancer and thereby studied the cytotoxicity over two standard cell lines, HT-29 and Caco-2. The conventional MTT assay was carried out over them which revealed an increase in % cell viability dose dependently. The IC50 values observed in the two cell lines were 384.2 μg/ml and 254.6 μg/ml respectively. In addition, DPPH radical scavenging test was performed for studying anti-oxidant activity. The results validate the administration of Fe3O4@W.tea/Agnanocomposite as a competent colon protective drug in the clinical trial studies over human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号