首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of Nitrosyl Complexes. XIII. Synthesis of Novel Di- and Trinuclear Heterobimetallic Complexes with Bridging NO Ligands By reaction of [{Cp′Fe(μ-NO)}2] with [Cp′Mn(CO)2 · (THF)] (Cp′ = μ5-C5H4Me) in THF [Cp3′Fe2Mn(μ-CO)2(μ-NO) · (μ3-NO)] 1 is formed in high yield. The reaction of [{Cp′Fe(μ-NO)}2]Na with [Cp′Mn(CO)2NO]BF4 in DME/acetone yields besides known [{Cp′Mn(CO)(NO)}2] 2 the novel complex [Cp2′FeMn(μ-NO)2NO] 3 . By interaction between [Cp′Mn(CO)2(THF)] and 3 , [Cp3′FeMn2(μ-CO)(μ-NO)2 · (μ3-NO)] 4 is formed. The complex 4 represents the hitherto unknown missing link in the series of the isoelectronic clusters [Cp3′Mn3(μ-NO)33-NO)], 1 , and [Cp3′Fe3(μ-CO)33-NO)]. Attempts to synthesize the unknown complex [(Cp′FeNO)2 · Cr(CO)5] by addition of carbene analogous Cr(CO)5 fragments to the Fe=Fe bond in [{Cp′Fe(μ-NO)}2] only led to very low yields of [Cp2′FeCr(CO)5] 5 . The new complexes were characterized by mass, NMR and IR spectra.  相似文献   

2.
The reaction of tetrakis(pyridine‐2‐yl)pyrazine (tppz) with 2 equiv of (2,2′‐bpy)PtII in water yields two isomeric dinuclear cations, [{Pt(2,2′‐bpy)}2(tppz)]4+, in which Pt coordination exclusively takes place through the two pairs of pyridine‐2‐yl nitrogen atoms. The two conformational isomers differ in their overall shape, with the formation of “Z” and “U” shapes, which are formed at 40 °C (Z isomer, 1 ) and under reflux conditions (U isomer, 2 ), respectively. X‐ray crystal‐structure analyses of the Z isomer, [{Pt(2,2′‐bpy)}2(tppz)](PF6)4 ? 3 CHCl3 ? 4 H2O ( 1 a ), and of the U isomer, [{Pt(2,2′‐bpy)}2](PF6)4 ? 2 CH3CN ? 1.5 H2O ( 2 a ), were carried out. Co‐crystallization of compound 2 with PtCl2(2,2′‐bpy) yielded [{Pt(2,2′‐bpy)}2(tppz)](BF4)4?[PtCl2(2,2′‐bpy)] ? 4.5 H2O ( 3 ), in which the PtCl2(2,2′‐bpy) entity was sandwiched between the two 2,2′‐bpy faces of the U‐shaped cation ( 2 ). Quantum chemical calculations revealed that the U isomer was more stable than the Z isomer, both in the gas phase and in an aqueous environment. These two isomers display different affinities toward duplex DNA and human telomeric quadruplex DNA (Htelo), as concluded from CD spectroscopy and FID assays. Thus, the U isomer binds significantly more strongly to quadruplex DNA (DC50=0.38 μM ) than the Z isomer (DC50=8.50 μM ).  相似文献   

3.
A series of binuclear complexes [{Cp*Ir(OOCCH2COO)}2(pyrazine)] ( 1 b ), [{Cp*Ir(OOCCH2COO)}2(bpy)] ( 2 b ; bpy=4,4′‐bipyridine), [{Cp*Ir(OOCCH2COO)}2(bpe)] ( 3 b ; bpe=trans‐1,2‐bis(4‐pyridyl)ethylene) and tetranuclear metallamacrocycles [{(Cp*Ir)2(OOC‐C?C‐COO)(pyrazine)}2] ( 1 c ), [{(Cp*Ir)2(OOC‐C?C‐COO)(bpy)}2] ( 2 c ), [{(Cp*Ir)2(OOC‐C?C‐COO)(bpe)}2] ( 3 c ), and [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](pyrazine)}2] ( 1 d ), [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](bpy)}2] ( 2 d ), [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](bpe)}2] ( 3 d ) were formed by reactions of 1 a – 3 a {[(Cp*Ir)2(pyrazine)Cl2] ( 1 a ), [(Cp*Ir)2(bpy)Cl2] ( 2 a ), and [(Cp*Ir)2(bpe)Cl2] ( 3 a )} with malonic acid, fumaric acid, or H2ADB (azobenzene‐4,4′‐chcarboxylic acid), respectively, under mild conditions. The metallamacrocycles were directly self‐assembled by activation of C? H bonds from dicarboxylic acids. Interestingly, after exposure to UV/Vis light, 3 c was converted to [2+2] cycloaddition complex 4 . The molecular structures of 2 b , 1 c , 1 d , and 4 were characterized by single‐crystal x‐ray crystallography. Nanosized tubular channels, which may play important roles for their stability, were also observed in 1 c , 1 d , and 4 . All complexes were well characterized by 1H NMR and IR spectroscopy, as well as elemental analysis.  相似文献   

4.
In this article, we report the syntheses and structures of two new inorganic–organic hybrid copper molybdates with organonitrogen ligands, [Cu2(bpe)(Mo2O8)]?·?3H2O (1) (bpe?=?1,2-bis(4-pyridyl)ethene) and [{Cu(4,4′-bpy)}2(Mo2O8)] (2) (bpy?=?4,4′-bipyridine). Elemental analyses, IR spectra, EPR spectra, XPS spectra, TG analyses and single crystal X-ray diffraction were used to characterize these compounds. The structure of 1 exhibits a pillared-layer framework built up from unusual bimetallic two-dimensional sheets pillared by linear bpe ligands. Compound 2 features a pillared-layer structure constructed from copper molybdate 4,8-net sheets connected by 4,4′-bpy ligands.  相似文献   

5.
The reaction of [{Ir(cod)(μ‐Cl)}2] and K2CO3 or of [{Ir(cod)(μ‐OMe)}2] alone with the non‐natural tetrapyrrole 2,2′‐bidipyrrin (H2BDP) yields, depending on the stoichiometry, the mononuclear complex [Ir(cod)(HBDP)] or the homodinuclear complex [{Ir(cod)}2(BDP)]. Both complexes react readily with carbon monoxide to yield the species [Ir(CO)2(HBDP)] and [{Ir(CO)2}2(BDP)], respectively. The results from NMR spectroscopy and X‐ray diffraction reveal different conformations for the tetrapyrrolic ligand in both complexes. The reaction of [{Ir(coe)2(μ‐Cl)}2] with H2BDP proceeds differently and yields the macrocyclic [4e?,2H+]‐oxidized product [IrCl2(9‐Meic)] (9‐Meic = monoanion of 9‐methyl‐9,10‐isocorrole), which can be addressed as an iridium analog of cobalamin.  相似文献   

6.
Reaction of 2,2′-bipyrimidine (bpym) with [Mo(CO)4(diene)] gives [Mo(CO)4(bpym)], which will react with [M(CO)4(diene)] to form [MoM(CO)8(bpym)] (M = Cr, Mo, W). The bipyrimidine complexes are characterised by microanalysis and spectroscopy (IR, 1H and 13C NMR, UV/vis). Reduction of [Mo2(CO)8(bpym)] produces an anion in which the unpaired electron is localised on the bridging bpym ligand.  相似文献   

7.
Reaction of Ph4P[Mo(2,2′-bipyridine)Cl(CO3] with 1,4-dichlorobut-2-yne in the presence of primary or secondary aliphatic amines gives high yields of neutral molybdenum complexes containing 2-substituted η3-bonded trans-butadienyl ligands. The crystal structure of the perfluorocarboxylate derivative [Mo(2,2′-bipyridine)(CO)23-CH2C(CONHMe)CCH2) (O2CC3F7] has been determined.  相似文献   

8.
[Bis(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)(2,2′-bipyridine)iron(II)], [Fe(PDT)2(bpy)]2+ (1), [bis(3-(4-phenyl-2-pyridyl)-5,6-diphenyl-1,2,4-triazine)(2,2′-bipyridine)iron(II)], [Fe(PPDT)2(bpy)]2+ (2), [bis(2,2′-bipyridine)(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II)], [Fe(PDT)(bpy)2]2+ (3), and [bis(2,2′-bipyridine)(3-(4-phenyl-2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II)], [Fe(PPDT)(bpy)2]2+ (4) have been synthesized and characterized. Substitution of the triazine and bipyridine ligands from the complexes by nucleophiles (nu), namely 1,10-phenanthroline (phen) and 2,2′,6,2″-terpyridine (terpy) was studied in a sodium acetate-acetic acid buffer over the pH range 3–6 at 25, 35, and 45°C under pseudo-first order conditions. Reactions are first order in the concentration of complexes 14. The reaction rates increase with increasing [nu] and pH whereas ionic strength has no effect on the rate. Straight-line plots with positive slopes are observed when the kobs values are plotted against [nu] or 1/[H+]. The substitution reactions proceed by dissociative as well as associative paths and the latter path is predominant. Observed low Ea values and negative ΔS# values support the dominance of the associative path. Phenyl groups on the triazine ring modulate the reactivity of the complexes. The π-electron cloud on the phenyl rings stabilizes the charge on metal center by inductive donation of electrons toward the metal center, resulting in a decrease in reactivity of the complex and the order is 1 < 2 < 3 < 4. Density functional theory (DFT) calculations also support the interpretations drawn from the kinetic data.  相似文献   

9.
Summary Bidentate ligands can readily replace acetone in thefac-[Mn(CO)3(chel)(OCMe2)]+ complexes or the perchlorate group fromfac-[Mn(CO)3(chel)(OClO3)] yieldingfac-[Mn(CO)3(chel)(L-L)]+ or [{fac-Mn(CO)3(chel)}2(L-L)]2+ [chel = 1,10-phenanthroline (phen), 2,2-bipyridine (bipy), 1,2-bis(diphenylphosphine)ethane (dpe); L-L = bis(diphenylphosphine)methane (dpm), dpe, 1,4-bis(diphenylphosphine)butane (dpb), succinonitrile (suc), and glutaronitrile (glu)]. Some of these mononuclear complexes are precursors for binuclear complexes which are linked by bridging phosphines or nitriles.  相似文献   

10.
Template‐assisted formation of multicomponent Pd6 coordination prisms and formation of their self‐templated triply interlocked Pd12 analogues in the absence of an external template have been established in a single step through Pd? N/Pd? O coordination. Treatment of cis‐[Pd(en)(NO3)2] with K3tma and linear pillar 4,4′‐bpy (en=ethylenediamine, H3tma=benzene‐1,3,5‐tricarboxylic acid, 4,4′‐bpy=4,4′‐bipyridine) gave intercalated coordination cage [{Pd(en)}6(bpy)3(tma)2]2[NO3]12 ( 1 ) exclusively, whereas the same reaction in the presence of H3tma as an aromatic guest gave a H3tma‐encapsulating non‐interlocked discrete Pd6 molecular prism [{Pd(en)}6(bpy)3(tma)2(H3tma)2][NO3]6 ( 2 ). Though the same reaction using cis‐[Pd(NO3)2(pn)] (pn=propane‐1,2‐diamine) instead of cis‐[Pd(en)(NO3)2] gave triply interlocked coordination cage [{Pd(pn)}6(bpy)3(tma)2]2[NO3]12 ( 3 ) along with non‐interlocked Pd6 analogue [{Pd(pn)}6(bpy)3(tma)2](NO3)6 ( 3′ ), and the presence of H3tma as a guest gave H3tma‐encapsulating molecular prism [{Pd(pn)}6(bpy)3(tma)2(H3tma)2][NO3]6 ( 4 ) exclusively. In solution, the amount of 3′ decreases as the temperature is decreased, and in the solid state 3 is the sole product. Notably, an analogous reaction using the relatively short pillar pz (pz=pyrazine) instead of 4,4′‐bpy gave triply interlocked coordination cage [{Pd(pn)}6(pz)3(tma)2]2[NO3]12 ( 5 ) as the single product. Interestingly, the same reaction using slightly more bulky cis‐[Pd(NO3)2(tmen)] (tmen=N,N,N′,N′‐tetramethylethylene diamine) instead of cis‐[Pd(NO3)2(pn)] gave non‐interlocked [{Pd(tmen)}6(pz)3(tma)2][NO3]6 ( 6 ) exclusively. Complexes 1 , 3 , and 5 represent the first examples of template‐free triply interlocked molecular prisms obtained through multicomponent self‐assembly. Formation of the complexes was supported by IR and multinuclear NMR (1H and 13C) spectroscopy. Formation of guest‐encapsulating complexes ( 2 and 4 ) was confirmed by 2D DOSY and ROESY NMR spectroscopic analyses, whereas for complexes 1 , 3 , 5 , and 6 single‐crystal X‐ray diffraction techniques unambiguously confirmed their formation. The gross geometries of H3tma‐encapsulating complexes 2 and 4 were obtained by universal force field (UFF) simulations.  相似文献   

11.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

12.
The 95Mo NMR spectra of a series of seven-coordinate molybdenum(II) isocyanide complexes of the types [Mo(CNR)7-nLn](PF6)2 (R = CH3, CHMe2, CMe3, C6H11, CH2Ph; L = py, bpy, Me2bpy, phen, dppe, P-n-Bu3; n = 0,1,2) [Mo(CNC-Me3)6X]PF6 (X = Cl, Br, I) and [{Mo(CNCMe3)4(NN)}2(μ-CN)](PF6)3 (NN = bpy, Me2bpy, phen) have been studied. The 95Mo chemical shift range for this group of complexes is about 1100 ppm. An increase in the size of the R group attached to the isocyanide ligand generally tends to shield the 95Mo nucleus. Replacement of the isocyanide ligand with a phosphorus ligand also increases the shielding, whereas the replacement of isocyanide with a heterocyclic nitrogen donor leads to deshielding by 800–900 ppm. This group of complexes shows a normal halogen dependence, i.e. replacement of Cl? by Br? and I? increases the shielding of the 95Mo nucleus. The cyano-bridged cations [{Mo(CNCMe3)4(NN)}2(μ-CN)]3+ (NN = bpy, Me2bpy, or phen) show two 95Mo NMR signals, one for the molybdenum coordinated to the carbon of the bridging CN and one for the N-coordinated molybdenum. Comparison of the chemical shifts and linewidths of the cyano-bridged species with those of the corresponding mononuclear molybdenum(II) complexes [Mo(CNCMe3)5(NN)](PF6)2 leads to the assignment of the more deshielded signal to the N-coordinated molybdenum. The 14N and 31P NMR spectra for these complexes have also been measured, as have the 13C NMR spectra of the pairs of complexes [Mo(CNCMe3)5(NN)](PF6)2 and [{Mo(CNCMe3)4(NN)}2(μ-CN)](PF6)3 (NN = bpy or phen). The 183W NMR spectra for [W(CNR)5(bpy)](PF6)2 (R = CMe3 and CH2Ph), show that the δ(183W)/δ(95Mo) chemical shift ratios for isocyanide complexes are different from the ratio found for M0 and MVI.  相似文献   

13.
The complexes [MBr(π-allyl)(CO)2(bipy)] (M = Mo, W, bipy = 2,2′-bipyridine) react with alkylxanthates (MIRxant), and N-alkyldithiocarbamates (MIRHdtc) (MI = Na or K), yielding complexes of general formula [M(S,S)- (π-allyl)(CO)2(bipy)] (M = Mo, (S,S) = Rxant (R = Me, Et, t-Bu, Bz), RHdtc (R = Me, Et); M = W, (S,S) = Extant). A monodentate coordentate coordination of the (S,S) ligand was deduced from spectral data. The reaction of [MoBr(π-allyl)(CO)2(bipy)] with MeHdtc and Mexant gives the same complexes whether pyridine is present or not. The complexes [Mo(S,S)(π-allyl)(CO)2(bipy)] ((S,S) = MeHdtc, Mexant) do not react with an excess of (S,S) ligand and pyridine.No reaction products were isolated from reaction of [MoBr(π-allyl)(CO)2(dppe)] with xanthates or N-alkyldithiocarbamates.  相似文献   

14.
The lowest electronic excited state of the complexes [Ru(2,2′-bipyridine)3]2+, fac-[ClRe (CO)3(2,2′-bipyridine)], and fac-[(pyridine) Re (CO)3(2,2′-bipyridine)]+ can be quenched by methyl viologen, MV2+, N,N′-dimethyl-4,4′-bipyridinium, in fluid solutions. The quenching obeys Stern—Volmer kinetics as deduced from plots of relative luminescence quantum yield vs [MV2+], and the data are consistent with a quenching process that is essentially diffusion controlled. Pulsed laser excitation (18 ns, 354.7 nm frequency tripled Nd: YAG) of the metal complexes in the presence of MV2+ shows that a detectable fraction of the quenching results in net electron transfer to form MV+. The MV+ is detectable by resonance Raman scattering from the trailing portion of the excitation pulse. Excited state electron transfer to MV2+ from a photo-excited complex anchored to SiO2 has also been detected by transient Raman spectroscopy. High surface area SiO2 was functionalized by reaction with 4-[2-(trimethoxysilyl)ethyl]pyridine to give [SiO2]-SiEtpyr. Reaction of [SiO2]-SiEtpyr with [(CH3CN)Re(CO)3(2,2′-bipyridine)]+ then yields [SiO2]-[(SiEtpyr) Re (CO)3 (2,2′-bipyridine)]+. Electron transfer quenching of the photo-excited immobilized Re complex occurs when suspended in CH3CN solutions of MV2+ to yield MV+ as detected by resonance Raman scattering and by lifetime attenuation in the presence of MV2+.  相似文献   

15.
In search of new DNA probes a series of new mono and binuclear cationic complexes [RuH(CO)(PPh3)2(L)]+ and [RuH(CO)(PPh3)2(-μ-L)RuH(CO)(PPh3)2]2+ [L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)aldimine (pbp) and p-biphenylene-bis(picoline)aldimine (bbp)] have been synthesized. The reaction products were characterized by microanalyses, spectral (IR, UV-Vis, NMR and ESMS and FAB-MS) and electrochemical studies. Structure of the representative mononuclear complex [RuH(CO)(PPh3)2(paa)]BF4 was crystallographically determined. The crystal packing in the complex [RuH(CO)(PPh3)2(paa)]BF4 is stabilized by intermolecular π-π stacking resulting into a spiral network. Topoisomerase II inhibitory activity of the complexes and a few other related complexes [RuH(CO)(PPh3)2(L)]+ {L=2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and 2,3-bis(2-pyridyl)-pyrazine (bppz)} have been examined against filarial parasite Setaria cervi. Absorption titration experiments provided good support for DNA interaction and binding constants have also been calculated which were found in the range 1.2 × 103-4.01 × 104 M−1.  相似文献   

16.
The versatile coordination behavior of the P4 butterfly complex [{Cp*Cr(CO)3}2(μ,η1:1-P4)] ( 1 ) towards Lewis acidic pentacarbonyl compounds of Cr, Mo and W is reported. The reaction of 1 with [W(CO)4(nbd)] (nbd=norbornadiene) yields the complex [{Cp*Cr(CO)3}231:1:1:1-P4){W(CO)4}] ( 2 ) in which 1 serves as a chelating P4 butterfly ligand. In contrast, reactions of 1 with [M(CO)4(nbd)] (M=Cr ( a ), Mo ( b )) result in the step-wise formation of [{Cp*Cr(CO)2}233:1:1-P4){M(CO)5}] ( 3 a,b ) and [{Cp*Cr(CO)2}2-(μ43:1:1:1-P4){M(CO)5}2] ( 4 a,b ) which contain a folded cyclo-P4 unit. Complex 4 a undergoes an unprecedented P1/P3-fragmentation yielding the cyclo-P3 complex [Cp*Cr(CO)23-P3)] ( 5 ) and the as yet unknown phosphinidene complex [Cp*Cr(CO)2{Cr(CO)5}23-P)] ( 6 ). The identity of 6 is confirmed by spectroscopic methods and by the in situ formation of [{Cp*Cr(CO)2(tBuNC)}P{Cr(CO)5}2(tBuNC)] ( 7 ). DFT calculations throw light on the bonding situation of the reported products.  相似文献   

17.
Interaction of the tripodal ligand N-[(2-pyridyl)methyl]-2,2′-dipyridylamine (pmdpa) with [Mo(CO)6] under reduced pressure gave two complexes [Mo(CO)4(pmdpa)] and [Mo(CO)2(pmdpa)2], depending on the mole ratio and reaction time. The i.r. spectra of the two complexes gave patterns in the metal carbonyl region confirming the proposed structures. Reaction of [Ru3(CO)12] with pmdpa in benzene gave the mononuclear complex [Ru(CO)3(pmdpa)]. The electronic absorption spectra of the complexes exhibited visible transitions due to metal-to-ligand charge transfers. Electrochemical investigation of the complexes showed some irreversible and quasi-reversible redox reactions due tautomeric interconversions through electron transfer.  相似文献   

18.
Reaction of chloranilic acid (H2ca) with [Os(bpy)2 Br2] (bpy = 2,2'-bipyridine) affords a dinuclear complex of type [{Os(bpy)2}2 (ca)]2+, isolated as the perchlorate salt. A similar reaction of H2ca with [Os(PPh3)2 (pap)Br2] (pap = 2-(phenylazo)pyridine) affords a dinuclear complex of type [{Os(PPh3)2 (pap)}2 (ca)]2+ (isolated as the perchlorate salt) and a mononuclear complex of type [Os(PPh3)2 (pap)(ca)]. Reaction of H2ca with [Os(PPh3)2(CO)2(HCOO)2] gives a dinuclear complex of type [{Os(PPh3)2(CO)2}2 (r-ca)], where r-ca is the two electron reduced form of the chloranilate ligand. The structures of the [{Os(PPh3)2 (pap)}2 (ca)](ClO4)2, [Os(PPh3)2 (pap)(ca)], and [{Os(PPh3)2(CO)2}2 (r-ca)] complexes have been determined by X-ray crystallography. In the [{Os(bpy)2}2 (ca)]2+ and [{Os(PPh3)2 (pap)}2 (ca)]2+ complexes, the chloranilate dianion is serving as a tetradentate bridging ligand. In the [Os(PPh3)2 (pap)(ca)] complex, the chloranilate dianion is serving as a bidentate chelating ligand. In the [{Os(PPh3)2(CO)2}2 (r-ca)] complex, the reduced form of the chloranilate ligand (r-ca(4-)) is serving as a tetradentate bridging ligand. All the four complexes are diamagnetic and show intense metal-to-ligand charge-transfer transitions in the visible region. The [Os(PPh3)2 (pap)(ca)] complex shows an Os(II)-Os(III) oxidation, followed by an Os(III)-Os(IV) oxidation on the positive side of a standard calomel electrode. The three dinuclear complexes show two successive oxidations on the positive side of SCE. The mixed-valent Os(II)-Os(III) species have been generated in the case of the two chloranilate-bridged complexes by coulometric oxidation of the homovalent Os(II)-Os(II) species. The mixed-valent Os(II)-Os(III) species show intense intervalence charge-transfer transitions in the near-IR region.  相似文献   

19.
《Solid State Sciences》2007,9(11):1006-1011
Three complexes, M2(bpy)2(bpdc)2·xH2O [M = Cu, x = 0; M = Zn or Cd, x = 2], have been hydrothermally synthesized by 1,1′-biphenyl-2,2′-dicarboxylic acid (H2bpdc) with 2,2′-bipyridine (bpy) to form binuclear molecules. In each, the two bpdc groups align the two opposing planar [M(bpy)]2+ cations. The molecules are connected by C–H⋯O hydrogen bonds, π–π stacking, and C–H⋯π interactions to form three dimensional supramolecular networks. Furthermore, at room temperature, complex 3 exhibits strong photoluminescence.  相似文献   

20.
Reaction of the complexes Ru(CO)2Cl2L [L = 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen)] with trifluoromethanesulphonic acid under carefully controlled conditions yields Ru[cis-(CO)2] [cis-(O3SCF3)2] (bidentate complexes. From reactions of the trifluoromethanesulphonates with the appropriate bidentate ligands, the new complexes [cis-Ru(CO)2-L(L′)]2+ (L as above; L′ = 4,4′-dimethyl-2,2′-bipyridyl or 4,4′-diisopropyl-2,2′-bipyridyl) as well as the known [cis-Ru(CO)2L2]2+ and [cis-Ru(CO)2bpy(phen)]2+ have been prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号