首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The synthesis and characteristics of a new chelating glycinohydroxamate-containing polymer resin is described. The functionality of the polymer is 1.76 mmolg–1. The hydrogen capacity, water regain and adsorption capacities for iron(III), cadmium(II), cobalt(II), copper(II), nickel(II) and zinc(II) were measured at various pH values; uptake of the metal ions increased with pH and was quantitative above pH 3 for most of the metal ions. All cations studied showed high exchange rates towards the resin. The half saturation times for iron(III), cadmium(II), copper(II) and zinc(II) were all less than 1 min. The coordination behaviour of the resin was studied with the help of e.p.r., i.r., u.v. and potentiometry. The pK a of the resin is 10.70 and the log value of the stability constants for iron(III), copper(II), lead(II), zinc(II), cobalt(II), manganese(II), cadmium(II) and nickel(II) were measured as 21.81, 19.50, 19.20, 18.59, 18.51, 18.46, 18.37 and 18.36, respectively, at 25 ° C and I = 0.2M KCl.  相似文献   

2.
Complexes of copper(II), nickel(II), cobalt(II), and zinc(II) with 2-[2-(6-methylbenzothiazolyl)azo]-5-dimethylaminobenzoic acid have been prepared and characterized by elemental analysis, vibrational spectra, magnetic susceptibility measurements, conductance measurements and e.p.r. spectra. Stability constants have been evaluated potentiometrically. Electronic spectra, magnetic susceptibility measurements and molecular modeling studies support a distorted square planar geometry around the metal ions. Vibrational spectra indicate the coordination of the azo group, nitrogen of benzothiazole, the carboxylate anion and the acetate ion on complexation with the metal ion. All complexes are found to be monomers. The stability of the complexes follow the order: copper(II) > nickel(II) > cobalt(II) > zinc(II).  相似文献   

3.
Mendez R  Pillai VN 《Talanta》1990,37(6):591-594
A chelating ion-exchange resin with hydroxamic acid functional groups was synthesized from styrene-maleic acid co-polymer cross-linked with divinylbenzene. A resin prepared from equimolar amounts of styrene and maleic anhydride with 0.75 mole% divinylbenzene gives the best sorption characteristics. The selectivity of the resin for metal ions is copper(II) > cobalt(II) > zinc(II) > nickel(II) > manganese(II) > chromium(III) > iron(III) > vanadium(V). Copper(II), chromium(III) and iron(III) in chromium plating baths can be separated by use of the resin and determined spectrophotometrically.  相似文献   

4.
Ghosh JP  Das HR 《Talanta》1981,28(4):274-276
A macroreticular polystyrene-based chelating ion-exchanger containing 1-nitroso-2-naphthol as the functional group has been synthesized. The exchange-capacity of the resin for a number of metal ions such as copper(II), iron(III), cobalt(II), nickel(II), palladium(II) and uranium(VI) as a function of pH has been determined. The sorption and elution characteristics for palladium(II) and uranium(VI) have been thoroughly examined with a view to utilizing the resin for separation and concentration of uranium and palladium. Uranium(VI) has been separated from a mixture of ten other metal ions by sorption on the chelating resin and selective elution with 0.5M sodium carbonate. Palladium(II) has been separated from various metal ions by selective sorption on the resin in 1M hydrochloric acid medium.  相似文献   

5.
The model chelating compounds β-[2,4-bis(dimethylamino)-s-triazin-6-yl] hydrazinoacetic acid, β-[2,4-bis(dimethylaniino)-s-triazind-yl] hydrazino-N, N-diacetic acid, 2,4-bis(dimethylamino)-s-triazin-6-yl-aminoacetic acid, and 2,4-bis(dimethylamino)-s-triazin-6-yl-iminodiacetic acid have been synthesized and characterized by composition analysis, infrared spectroscopy, and potentiometric titration data. The copper(II), nickel(II), cobalt(II), zinc(II), magnesium(II), and palladium(II) complexes of the first two model compounds, and the copper, nickel, cobalt, and zinc complexes of the third and fourth model compounds have been prepared. The infrared absorption spectra of the model compounds and their complexes were recorded for the range 3800 to 600 cm?1, and the assignment of pertinent bands was made by comparison with reported infrared correlations. In those cases where applicable, shifts in the NH stretching vibration and carboxylate stretching vibration frequencies of the metal complexes were compared to those of the proper references and used as an indication of possible chelation effects in the metal complexes.

The aldehyde-reactable β-[2,4-diarnino-s-triazin-6-y1] hydrazinoacetic acid was also prepared and characterized; its polymers were prepared by the reaction of both the free ligand and its copper(II) complex with formaldehyde. Qualitative studies on the reaction of these polymers with metal ions and on the ease of metal ion elution from the polymers indicate that t h is a promising chelating polymer system.  相似文献   

6.
A chelating agent-loaded resin consisting of 8-quinolinol-5-sulfonic acid and an anion-exchange resin (HOx-resin) was prepared in order to concentrate trace chalcophile elements in natural water samples selectively before neutron activation analysis. The exchange capacity of the Diaion SA No. 100 for the reagent (1.8 meq . g-1 resin) corresponds approximately to that for chloride ion (1.83 meq . g-1 resin), indicating that 8-quinolinol-5-sulfonic acid is adsorbed quantitatively on the exchange site of the resin through the sulfonate anion in the reagent. The basic conditions for the adsorption of the metal ions on the resin were investigated by employing the column method. The nitrate concentration and the pH of the sample solution affect the adsorption behavior of metal ions. Several solutions containing metal ions with varying pH or varying nitrate concentration were applied to the resin column (35 mm x 7 mm phi) with a flow rate of 2.0 cm3 . min-1. As a result, the optimum conditions for the quantitative adsorption of copper(II), zinc(II), cadmium(II), cobalt(II), nickel(II) and manganese(II) were as follows: NO3- less than 0.01 mol . dm-3 pH greater than 4.6. Furthermore, the feasibility of the above conditions as well as quantitative adsorption of the chalcophile elements was confirmed through the neutron activation analysis of the synthesized metal solutions.  相似文献   

7.

3-Carboxylacetonehydroxamic acid (CAHA) and its iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized and characterized by elemental analysis, UV-Vis and IR spectra and magnetic susceptibility. The pK a1 and pK a2 values of the ligand in aqueous solution were found to be 6.5 ± 0.1 and 8.6 ± 0.1, which correspond to dissociation of carboxyl and hydroxamic protons, respectively. The dianion CAH acts as a tetradentate ligand through the hydroxamate and carboxylate groups and coordinates to the divalent metal ions, forming coordination polymers with a metal-to-ligand ratio of 1 : 1 in the solid state. FTIR spectra and thermal decomposition of the ligand and its metal complexes were recorded and briefly discussed. The electrochemical behavior of the complexes was investigated by square wave voltammetry and cyclic voltammetry at neutral pH. In contrast to the solid state, the iron(II) and copper(II) cations form stable complex species with a metal-to-ligand ratio of 1 : 2 in solution. The iron(II), cobalt(II) and nickel(II) complexes show two-electron irreversible reduction behavior, while the copper(II) and zinc(II) complexes undergo quasi-reversible and reversible electrode reactions, respectively. The stability constants of the complexes were determined by square wave voltammetry.  相似文献   

8.
Summary Mixed ligand complexes of copper(II), zinc(II), nickel(II) and cobalt(II) ions involving 1,10-phenanthroline (phen) as primary and 3,5-dinitrosalicylic acid (dnsa), 5-nitrosalicylic acid (nsa), 5-chlorosalicylic acid (csa) and 3,5-dibromosalicylic acid (dbsa) as secondary ligands in solution have been investigated potentiometrically [25°, µ = 0.1 M [NaClO4], medium 50% v: v aqueous ethanol]. The stability order of mixed ligand complexes with respect to the metal ions obeys the natural order: cobalt(II) < nickel(II) < copper(II) > zinc(II). The stabilities of the heterometal chelates have been compared with the corresponding homometal chelates of the secondary ligands and have been interpreted in terms of metal-ligand effects and coulombic interactions between various ligand anion species present.  相似文献   

9.
Binary complexes of α-hydroxy acids (L-Tartaric acid and L-Malic acid) with d-electron metal ions (copper, cobalt, nickel) were investigated. Potentiometric measurements have been performed in aqueous solution with computer analysis of the data for determination of the stability constants of complexes formed in the studied systems. The coordination mode of the complexes was defined using spectroscopic methods: electron paramagnetic resonance (EPR), ultraviolet-visible (UV-Vis), circular dichroism (CD), and infrared (IR). Results of the equilibrium studies have provided evidence for the formation of dimers with copper(II) ions and monomers with cobalt(II) and nickel(II) ions.  相似文献   

10.
The measured concentrations of cadmium, cobalt, copper, nickel, lead, zinc, and manganese in acidified (pH<2) estuarine water samples analyzed for total dissolved trace metal concentrations using on-line chelating resin column partitioning with inductively coupled plasma-mass spectrometry (CRCP-ICP-MS) were compared to those analyzed by graphite furnace atomic absorption spectrometry (GFAAS) after liquid-liquid extraction using a combination of 1-pyrrolidinedithiocarbamate/diethyldithiocarbamate (PDC/DDC). Although there was good agreement between the two sets of analyses for cadmium, lead, manganese, and zinc concentrations, those of cobalt, copper, and nickel determined by CRCP-ICP-MS were found to be 10-20% lower than those determined by solvent-extraction GFAAS. The different yields were positively correlated (R>0.961, simple linear regression) to the dissolved organic carbon (DOC) concentration of the samples. Good agreement between the two methods for cobalt and copper was achieved after ultraviolet (UV) digestion of the acidified samples. Samples collected from the South Bay of the San Francisco Estuary with high DOC showed the greatest difference for cobalt, copper, and nickel which is tentatively attributed to complexation with humic material for copper and cobalt and strong synthetic chelating agents such as ethylenediaminetetraacetic acid (EDTA) for nickel. This is consistent with previous studies on copper, nickel and cobalt complexation in this region. We recommend UV digestion of acidified estuarine samples prior to multi-element analysis by chelating resin flow injection ICP-MS methods.  相似文献   

11.
The coordination chemistry of several O,S mixed donor ligands, namely thiopyrone and hydroxypyridinethione chelators, with a variety of middle and late first-row transition-metal ions is described. Complexes of 3-hydroxy-2-methyl-4-thiopyrone (thiomaltol) with cobalt(II), copper(II) and zinc(II); 3-hydroxy-1,2-dimethyl-4(1H)-pyridinethione (3,4-HOPTO) with iron(III), nickel(II), copper(II) and zinc(II); and 3-hydroxy-1-methyl-2(1H)-pyridinethione (3,2-HOPTO) with iron(III), nickel(II), copper(II) and zinc(II) have been synthesized and characterized. The structures, absorbance spectroscopy, cyclic voltammetry and superconducting quantum interferometer device (SQUID) measurements of selected metal complexes, as well as ligand protonation constants, are reported. Most of the metal complexes show coordination geometries indicative of a strong trans influence by the O,S chelators. The data presented herein provide the most detailed study of the transition-metal coordination chemistry of both thiopyrone and hydroxypyridinethione O,S donor ligands to date, and provide the basis for the investigation of these ligands in realm of biological inorganic chemistry.  相似文献   

12.
Summary The ligating properties of 2-iminocyclohexanedithiocarboxylic acid were investigated. Complexes with halides of manganese(II), iron(II), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) were synthesized and characterized by elemental analysis, magnetic measurements, electron and i.r.1H n.m.r. spectral studies. The results are concordant with a bidentate coordination of the—CS2 group to the metal ions.  相似文献   

13.
Saitoh T  Satoh F  Hiraide M 《Talanta》2003,61(6):811-817
Thermoresponsive polymers, poly(N-isopropylacrylamide) (PNIPAAm), having chelating functionalities were synthesized. PNIPAAm-imidazole (-Im) was precipitated and formed a gum-like aggregate in the neutral pH region at 50 °C, while PNIPAAm-carboxylic acid (---COOH) and PNIPAAm-iminodiacetic acid (-IDA) remained soluble even at pH 7. An addition of a paired ion, dodecyltrimethylammonium ion, was effective for inducing the precipitation of those polymers. PNIPAAm-Im was useful for collecting copper(II), nickel(II), cobalt(II), and lead(II), but was ineffective for cadmium(II) recovery. In contrast, PNIPAAm-COOH collected cadmium(II), while insufficiently recovered cobalt(II) and nickel(II). PNIPAAm-IDA was the best choice for collecting all metal ions in neutral pH's. After 20-folds concentration, the metal ions in river and seawater were successfully determined by graphite furnace atomic absorption spectrometry (GFAAS).  相似文献   

14.
The separation of iron(III), copper(II) and uranyl(II) ions from a series of salt solutions by chelating ion exchange on Duolite CS-346 resin by pH control is described. Recoveries of these ions from cobalt and nickel salt solutions were quantitative. Iron may also be separated from copper by selective sorption with pH control, and uranium from iron and copper by selective desorption with sodium carbonate solution as eluent.  相似文献   

15.
This paper reports the utilization of solid-phase extraction and the reversed-phase high-performance liquid chromatography for the determination of six important transition metal ions: iron, cobalt, nickel, copper, zinc and manganese in tobacco with 2-(2-quinolinylazo)-5-dimethylaminophenol (QADMAP) as chelating reagent. Iron, cobalt, nickel, copper, zinc and manganese ions react with QADMAP to form colored chelates in the medium of acetic acid-sodium acetate buffer solution (pH 4.0). These chelates can be enriched by solid-phase extraction with Waters Sep-Pak-C18 cartridge, and eluted the retained chelates from cartridge with tetrahydrofuran. The chelates were separated on a Waters Nova-Pak-C18 column (150x3.9 mm, 5 microm) by gradient elution with methanol (containing 0.5% of acetic acid) and 0.05 mol/l pH 4.0 acetic acid-sodium acetate buffer solution as mobile phase at a flow-rate of 0.5 ml/min. The detection limits of iron, cobalt, nickel, copper, zinc and manganese are 10, 12, 8, 13, 17 and 22 ng/l, respectively. This method had been applied to the determination of iron, cobalt, nickel, copper, zinc and manganese in tobacco with good results.  相似文献   

16.
N-Phenylbenzamide-2,2′-dicarboxylic acid (PBDA) and its copper(II), nickel(II), cobalt (II), zinc(II) and manganese(II) chelates have been synthesized and characterized by their physical measurements, infrared and electronic spectra and magnetic moment data. In an acute anti-inflammatory test, the cobalt chelate was most active (31.1% inhibition) followed by the zinc and copper chelates, whereas the copper chelate (22.3% inhibition) was most active in an adjuvant arthritis test. Again the cobalt chelate was most active in the cotton-wad granuloma test. Gastric irritancy was markedly reduced after chelation by copper, followed in order by zinc, cobalt, manganese and nickel chelates. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
The coordination compounds obtained by reaction of hot solutions of dipicolinic acid with the carbonates of the divalent metal ions manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) are studied using TG, DSC and HTRS techniques. For the thermal stability a sequence Mn > Fe > Zn > Co > Ni > Cu may be observed. This series is compared with the similar series obtained with isocinchomeronic acid. The thermal stability is, for each metal of the series, isocinchomeronic > dipicolinic. Thermal stability is discussed in terms of the intermolecular bonds, of the structures and of the stability constants of the complexes examined.  相似文献   

18.
Copper(ii), nickel(ii) and zinc(ii) complexes of the peptides Ac-HVVH-NH(2) and Ac-HAAHVVH-NH(2) have been studied by potentiometric, UV-vis, CD, EPR and NMR spectroscopic measurements. Both tetra and heptapeptides can form relatively stable macrochelates with copper(ii), nickel(ii) and zinc(ii) ions, in which the ligands are coordinated via the side-chain imidazole functions. Formation of the macrochelates slightly suppresses, but cannot prevent the copper(ii) and nickel(ii) ion promoted deprotonation and coordination of the amide functionalities. The overall stoichiometry of the major species is [MH(-3)L](-) with a 4N (= N(-),N(-),N(-),N(im)) coordination mode. In the case of Ac-HAAHVVH-NH(2), coordination isomers of this species can exist with a preference for copper(ii) or nickel(ii) binding at the internal histidyl residue. In the copper(ii)-Ac-HAAHVVH-NH(2) system, the presence of the two anchoring sites results in the formation of dinuclear complexes. The existence of these species requires the involvement of amide functions in metal binding. Both equilibrium and spectroscopic data support the fact that the copper(ii) ions of the dinuclear species are independent from each other providing a good chance for the formation of various mixed metal complexes. It was found that zinc(ii) is not able to significantly alter the copper(ii) binding of the heptapeptide, but it can occupy the uncoordinated histidyl sites. The formation of the copper(ii)-nickel(ii) mixed species was obtained in alkaline solutions and CD spectra suggest the statistical distribution of the two metal ions among the histidyl residues. The binding of HAAHVVH to palladium(ii) is exclusive below pH 8 and the mixed metal species of palladium(ii) and copper(ii) ions are formed only in slightly basic solutions.  相似文献   

19.
Metal complexes of manganese(II), iron(II), cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) with Schiff base derived from 2,5-dihydroxyacetophenone and s-benzyldithiocarbazate have been synthesized and characterized by elemental analysis, thermogravimetric analysis, molar conductance, molecular weight, magnetic susceptibility measurements, and electronic and infrared spectra. The molar conductivity data show them to be nonelectrolytes. The Schiff base behaves as a tridentate dibasic ONS donor towards metal ions. Thermal analyses indicate the presence of water in the complexes, making them six and four coordinates. The solid state electrical conductivity of the ligand and its complexes has been measured in the temperature range 313–414 K and the complexes are found to show semiconducting behavior. The antibacterial activities of the ligand and its complexes have also been screened against various organisms and it is observed that the coordination of metal ions has a pronounced effect on the bacterial activity of the ligand.  相似文献   

20.
Acetamidomalondihydroxamate (K2AcAMDH) and its manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized and characterized by elemental analysis, UV–VIS, IR and magnetic susceptibility. The pK a1 and pK a2 values of the dihydroxamic acid in aqueous solution were found to be 8.0?±?0.1 and 9.7?±?0.1. The dihydroxamate anion AcAMDH behaves as a tetradentate bridging ligand through both hydroxamate groups, forming complexes with a metal to ligand ratio of 1?:?1 in the solid state. The FTIR spectra and thermal decompositions of the ligand and its metal complexes were recorded. The redox behavior of the complexes was investigated in aqueous solution by square wave voltammetry and cyclic voltammetry at neutral pH. In contrast to the solid state, in solution the copper(II) and zinc(II) ions form stable complex species with a metal to ligand ratio of 1?:?2. The iron(II) and nickel(II) complexes show a two-electron irreversible reduction behavior, while the copper(II) and zinc(II) complexes undergo reversible electrode reactions. The stability constants of the complexes were determined by square wave voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号