首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(Py)][BPh4] (1) as a single isomer with Py in the trans to PPh3 position, is formed upon the reaction of cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] with pyridine in methylene chloride solution.Complex 1 was characterized by elemental analysis and by 31P{1H} and 1H NMR spectra.Cationic pentacoordinate acetyl complexes, trans-[Rh(Acac)(PPh3)2(COCH3)][BPh4] (2) and trans-[Rh(BA)(PPh3)2(COCH3)][BPh4] (3), are prepared by action of carbon monoxide on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4], respectively, in methylene chloride solutions.Complexes 2 and 3 were characterized by elemental analysis and by IR, 31P{1H}, 13C{1H} and 1H NMR. According to NMR data, 2 and 3 in solution are non-fluxional trigonal bipyramids with β-diketonate and acetyl ligands in the equatorial plane and axial phosphines.In solutions, 2 and 3 gradually isomerize into octahedral methyl carbonyl complexes trans-[Rh(Acac)(PPh3)2(CO)(CH3)][BPh4] (4) and trans-[Rh(BA)(PPh3)2(CO)(CH3)][BPh4] (5), respectively.Complexes 4 and 5 were characterized by IR, 31P{1H}, 13C{1H} and 1H NMR, without isolation.Upon the action of PPh3 on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)] [BPh4], reductive elimination of the methyl ligand as a phosphonium salt, [CH3PPh3][BPh4], occurs to give square planar rhodium(I) complexes [Rh(Acac)(PPh3)2] and[Rh(BA)(PPh3)2], respectively. The reaction products were identified in the reaction mixtures by 31P{1H} and 1H NMR.  相似文献   

2.
Four new ligands, (4-methyl-phenyl)-pyridin-2-ylmethylene-amine (A), (2,3-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (B), (2,4-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (C) and (2,5-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (D), and their corresponding copper(I) complexes, [Cu(A)2]ClO4 (1a), [Cu(B)2]ClO4 (1b), [Cu(C)2]ClO4 (1c), [Cu(D)2]ClO4 (1d), [Cu(A)(PPh3)2]ClO4 (2a), [Cu(B)(PPh3)2]ClO4 (2b), [Cu(C)(PPh3)2]ClO4 (2c) and [Cu(D)(PPh3)2]ClO4 (2d), have been synthesized and characterized by CHN analyses, 1H and 13C NMR, IR and UV–Vis spectroscopy. The crystal structures of [Cu(B)2]ClO4 (1b), [Cu(C)2]ClO4 (1c) and [Cu(A)(PPh3)2]ClO4 · 1/2CH3CN (2a) were determined from single crystal X-ray diffraction. The coordination polyhedron about the copper(I) center in the three complexes is best described as a distorted tetrahedron. A quasireversible redox behavior is observed for the complexes.  相似文献   

3.
Reactions of Rh(ClO4)(CO)(PPh3)2 with dicyano olefins, cis-NCCHCH-CH2CH2CN (c-DC1B), rans-NCCHCHCH2CH2CN (t-DC1B), trans-NCCH2CHCHCH2CN (t-DC2B), and NCCH2CH2CH2CN (DCB) produce the binuclear dicationic rhodium(I) complexes, [(CO)(PPh3)2RhNCACNRh-(PPh3)2(CO)](ClO4)2 (NCACN = c-DC1B 1), t-DC1B (2), t-DC2B (3), DCB (4). Complexes 1 and 2 are catalytically active for the hydrognation of c-DC1B and t-DC1B, respectively, to give DCB, while complex 3 catalyze the isomerization of t-DC2B to give c-DC1B and t-DC1B, and the hydrogenation of t-DC2B to DCB at 100°C.  相似文献   

4.
Cationic methyl complex of rhodium(III), trans-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] (1) is prepared by interaction of trans-[Rh(Acac)(PPh3)2(CH3)I] with AgBPh4 in acetonitrile. Cationic methyl complexes of rhodium(III), cis-[Rh(Acac)(PPh3)2 (CH3)(CH3CN)][BPh4] (2) and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4] (3) (Acac, BA are acetylacetonate and benzoylacetonate, respectively), are obtained by CH3I oxidative addition to rhodium(I) complexes [Rh(Acac)(PPh3)2] and [Rh(BA)(PPh3)2] in acetonitrile in the presence of NaBPh4. Complexes 2 and 3 react readily with NH3 at room temperature to form cis-[Rh(Acac)(PPh3)2(CH3)(NH3)][BPh4] (4) and cis-[Rh(BA)(PPh3)2(CH3)(NH3)][BPh4] (5), respectively. Complexes 1-5 were characterized by elemental analysis, 1H and 31P{1H} NMR spectra. Complexes 1, 2, 3 and 4 were characterized by X-ray diffraction analysis. Complexes 2 and 3 in solutions (CH2Cl2, CHCl3) are presented as mixtures of cis-(PPh3)2 isomers involved into a fluxional process. Complex 2 on heating in acetonitrile is converted into trans-isomer 1. In parallel with that isomerization, reductive elimination of methyl group with formation of [CH3PPh3][BPh4] takes place. Replacement of CH3CN in complexes 1 and 2 by anion I yields in both cases the neutral complex trans-[Rh(Acac)(PPh3)2(CH3)I]. Strong trans influence of CH3 ligand manifests itself in the elongation (in solid) and labilization (in solution) of rhodium-acetonitrile nitrogen bond.  相似文献   

5.
The reaction of K2[PtCl4] with 2-(1-methylbenzyl)pyridine, HL, and 2-benzylpyridine, HL', affords the cyclometallated species [{Pt(L)Cl}2] (1) and [{Pt(L')Cl}2] (2), respectively. The chloride bridge in complex 1 can be split by neutral or anionic species to give the monomeric, [Pt(L)(Ph3P)Cl], as two isomers, trans-P-Pt-C (3) and trans-P-Pt-N, (4), [Pt(L)(py)Cl] (5), [Pt(L)(CO)Cl] (6), [Pt(L)(CNCH2SO2C6H4CH3-4)Cl] (7), [Pt(L)(acac)] (Hacac = 2,4-pentanedione) (8), [Pt(L)(dppm)][BF4] (dppm = bis(diphenyl-phosphino)methane) (9), [Pt(L)(dppe)][BF4] (dppe = bis(diphenylphosphino)ethane) (10) and [Pt(L)(dipy)][BF4](dipy = 2,2'-dipyridine) (11). Similarly, compound 2, by reaction with Ph3P, affords [Pt(L')(Ph3P)Cl], as two isomers, trans-P-Pt-C (12) and trans-P-Pt-N (13). Reaction of compounds 1 or 4 with AgBF4 in acetonitrile affords [Pt(L)(CH3CN)2IBF4] (14) or [Pt(L)(Ph3P)-(CH3CN)][BF4] (15). From these, [Pt(L)(Ph3P)2][BF4] (16), [Pt(L)(Ph3P)(CO)][BF4] (17) and [Pt(L)(Ph3P)(py)][BF4] (18), can be obtained by displacement of the coordinated acetonitrile. The new complexes were characterized by IR, 1H and 31P NMR and FAB-MS spectroscopic techniques. The NMR spectra at room temperature of most of the species derived from HL give evidence for the presence in solution of two diastereomers a and b. The structure of one diastereomer of complex 4 has been solved by single crystal X-ray diffraction, 4b. The platinum atom is in an almost square planar geometry with a P-Pt-N trans arrangement: Pt-N = 2.095(3), Pt-C = 1.998(4), Pt-P = 2.226(1) and Pt-Cl = 2.400(1) Å. The six-membered cyclometallated ring is in a boat conformation, with the CH3 group in an equatorial position, i.e pointing away from the metal. Attempts to obtain [{Pt(L″)Cl}2] (HL″ = 2-(dimethylbenzyl)pyridine), afforded an insoluble product heavily contaminated by platinum metal; treatment of this crude material with Ph3P gave [Pt(L″)(Ph3P)Cl] (19).  相似文献   

6.
Summary Reactions of cinnamonitrile (trans-PhCH=CHCN) with [M(ClO4)(CO)(PPh3)2] (M=Rh or Ir) produce hydrogenation oftrans-PhCH=CHCN to PhCH2CH2CN at 100°C under 3 atm of hydrogen.  相似文献   

7.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

8.
Summary The reaction of previously reported RhI and IrI cationic complexes towards carbon monoxide and triphenylphosphine has been studied. Carbonyl rhodium(I) mixed complexes of the formulae [Rh(CO)L2(PPh3)]ClO4, (L=tetrahydrothiophene(tht), trimethylene sulfide(tms), SMe2, or SEt2), [(CO)(PPh3)Rh{-(L-L)}2Rh(PPh3)(CO)](ClO4)2 (L-L= 2,2,7,7-tetramethyl-3,6-dithiaoctane (tmdto), (MeS)2(CH2)3 (dth), or 1,4-dithiacyclohexane (dt), [Rh(CO)L(PPh3)2]ClO4 (L= tht, tms, SMe2, or SEt2), and carbonyl iridium(I) complexes of the formulae [Ir(CO)2(COD)(PPh3)]ClO4, [Ir(CO)(COD)(PPh3)2]ClO4, [(CO)(COD)(PPh3) Ir{-(L-L)} Ir(PPh3)(COD)(CO)](ClO4)2 (L-L = tmdto or dt), [(CO)2 (PPh3)Ir(-tmdto)Ir(PPh3)(CO)2](ClO4)2, [(CO)2(PPh3) Ir(-dt)2Ir(PPh3)(CO)2](ClO4)2, were prepared by different synthetic methods.  相似文献   

9.
The reactions of the complexes CpCo(CO)L (Cp = cyclopentadienyl, L = CO, PPh3) with ClCH2CN have been investigated. Chloroacetonitrile reacts with CpCo(CO)PPh3 to give the cationic complex [CpCo(CH2CN)(CNCH2Cl)PPh3]+, which has been isolated and characterized. Compounds of the type [CpCo(CH2CN)(bipy)]+ BPh4? and CpCo(CH2CN)PPh3CN have been obtained by substitution reactions.  相似文献   

10.
Polypyridyl ruthenium(II) dicarbonyl complexes with an N,O- and/or N,N-donor ligand, [Ru(pic)(CO)2Cl2] (1), [Ru(bpy)(pic)(CO)2]+ (2), [Ru(pic)2(CO)2] (3), and [Ru(bpy)2(CO)2]2+ (4) (pic=2-pyridylcarboxylato, bpy=2,2′-bipyridine) were prepared for comparison of the electron donor ability of these ligands to the ruthenium center. A carbonyl group of [Ru(L1)(L2)(CO)2]n (L1, L2=bpy, pic) successively reacted with one and two equivalents of OH to form [Ru(L1)(L2)(CO)(C(O)OH)]n−1 and [Ru(L1)(L2)(CO)(CO2)]n−2. These three complexes exist as equilbrium mixtures in aqueous solutions and the equilibrium constants were determined potentiometrically. Electrochemical reduction of 2 in CO2-saturated CH3CN–H2O at −1.5 V selectively produced CO.  相似文献   

11.
The reaction of sodium cyanopentacarbonylmetalates Na[M(CO)5(CN)] (M=Cr; Mo; W) with cationic Fe(II) complexes [Cp(CO)(L)Fe(thf)][O3SCF3], [L=PPh3 (1a), CN-Benzyl (1b), CN-2,6-Me2C6H3 (1c); CN-But (1d), P(OMe)3 (1e), P(Me)2Ph (1f)] in acetonitrile solution, yielded the metathesis products [Cp(CO)(L)Fe(NCCH3)][NCM(CO)5] [M=W, L=PPh3 (2a), CN-Benzyl (2b), CN-2,6-Me2C6H3 (2c); CN-But (2d), P(OMe)3 (2e), P(Me)2Ph (2f); M=Cr, L=(PPh3) (3a), CN-2,6-Me2C6H3 (3c); M=Mo, L=(PPh3) (4a), CN-2,6-Me2C6H3 (4c)]. The ionic nature of such complexes was suggested by conductivity measurements and their main structural features were determined by X-ray diffraction studies. Well-resolved signals relative to the [M(CO)5(CN)] moieties could be distinguished only when 13C NMR experiments were performed at low temperature (from −30 to −50 °C), as in the case of [Cp(CO)(PPh3)Fe(NCCH3)][NCW(CO)5] (2a) and [Cp(CO)(Benzyl-NC)Fe(NCCH3)][NCW(CO)5] (2b). When the same reaction was carried out in dichloromethane solution, neutral cyanide-bridged dinuclear complexes [Cp(CO)(L)FeNCM(CO)5] [M=W, L=PPh3 (5a), CN-Benzyl (5b); M=Cr, L=(PPh3) (6a), CN-2,6-Me2C6H3 (6c), CO (6g); M=Mo, L=CN-2,6-Me2C6H3 (7c), CO (7g)] were obtained and characterized by infrared and NMR spectroscopy. In all cases, the room temperature 13C NMR measurements showed no broadening of cyano pentacarbonyl signals and, relative to tungsten complexes [Cp(CO)(PPh3)FeNCW(CO)5] (5a) and [Cp(CO)(CN-Benzyl)FeNCW(CO)5] (5b), the presence of 183W satellites of the 13CN resonances (JCW ∼ 95 Hz) at room temperature confirmed the formation of stable neutral species. The main 13C NMR spectroscopic properties of the latter compounds were compared to those of the linkage isomers [Cp(CO)(PPh3)FeCNW(CO)5] (8a) and [Cp(CO)(CN-Benzyl)FeCNW(CO)5] (8b). The characterization of the isomeric couples 5a-8a and 5b-8b was completed by the analyses of their main IR spectroscopic properties. The crystal structures determined for 2a, 5a, 8a and 8b allowed to investigate the geometrical and electronic differences between such complexes. Finally, the study was completed by extended Hückel calculations of the charge distribution among the relevant atoms for complexes 2a, 5a and 8a.  相似文献   

12.
Protonation of the alkynyl complex Cp(CO)(PPh3)RuCCPh (1) at low temperature affords quantitatively the vinylidened complex [Cp(CO)(PPh3)RuCCH(Ph)]+ (3), which upon warming to room temperature forms an equilibrium with the η2-phenylacetylene complex [Cp(CO)(PPh3)Ru(η2-HCCPh)]+ (4), with the latter predominating. Subsequent reaction with ethylene oxide yields the cyclic oxacarbene complex [Cp(CO)(PPH3)Ru=CCH(Ph)CH2CH2O]+ (5), which can be regarded as the result of a net [3+2] cycloaddition reaction between 3 and ethylene oxide. Depronation of 5 affords teh corresponding neutral cyclic vinyl complex [Cp(CO)(PPH3)RuC=C(Ph)CH2CH2O]+ (6), which can in turn be protonated to regenerate 5 in a diastereoselective manner. The structures of complexes 5 and 6 were determined by X-ray crystallography.  相似文献   

13.
Addition of excesses of N-heterocyclic carbenes (NHCs) IEt2Me2, IiPr2Me2 or ICy (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene; IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; ICy = 1,3-dicyclohexylimidazol-2-ylidene) to [HRh(PPh3)4] (1) affords an isomeric mixture of [HRh(NHC)(PPh3)2] (NHC = IEt2Me2 (cis-/trans-2), IiPr2Me2 (cis-/trans-3), ICy (cis-/trans-4) and [HRh(NHC)2(PPh3)] (IEt2Me2(cis-/trans-5), IiPr2Me2 (cis-/trans-6), ICy (cis-/trans-7)). Thermolysis of 1 with the aryl substituted NHC, 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (IMesH2), affords the bridging hydrido phosphido dimer, [{(PPh3)2Rh}2(μ-H)(μ-PPh2)] (8), which is also the reaction product formed in the absence of carbene. When the rhodium precursor was changed from 1 to [HRh(CO)(PPh3)3] (9) and treated with either IMes (=1,3-dimesitylimidazol-2-ylidene) or ICy, the bis-NHC complexes trans-[HRh(CO)(IMes)2] (10) and trans-[HRh(CO)(ICy)2] (11) were formed. In contrast, the reaction of 9 with IiPr2Me2 gave [HRh(CO)(IiPr2Me2)2] (cis-/trans-12) and the unusual unsymmetrical dimer, [(PPh3)2Rh(μ-CO)2Rh(IiPr2Me2)2] (13). The complexes trans-3, 8, 10 and 13 have been structurally characterised.  相似文献   

14.
The complexes [IrH(CO)(PPh3)3], trans-[IrCI(CO)- (PPh3)2], [RhH(PPh3)4], [Pd(PPh3)4], [Pt(trans-stilbene)(PPh3)2] and [Pt(η3-CH2-COCH2)-(PPh3)2] catalyse the rearrangement of Me3SiCH2C(O)CH2Cl to CH2?C(OSiMe3)-CH2Cl.  相似文献   

15.
6-Aminocoumarin reacts with pyridine-2-carboxaldehyde and has synthesized N-[(2-pyridyl)methyliden]-6-coumarin (L). The ligand, L, reacts with [Cu(MeCN)4]ClO4/AgNO3 to synthesize Cu(I) and Ag(I) complexes of formulae, [Cu(L)2]ClO4 and [Ag(L)2]NO3, respectively. While similar reaction in the presence of PPh3 has isolated [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3. All these compounds are characterized by FTIR, UV-Vis and 1H NMR spectroscopic data. In case of [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3, the structures have been confirmed by X-ray crystallography. The structure of the complexes are distorted tetrahedral in which L coordinates in a N,N′ bidentate fashion and other two coordination sites are occupied by PPh3. The ligand and the complexes are fluorescent and the fluorescence quantum yields of [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3 are higher than [Cu(L)2]ClO4 and [Ag(L)2]NO3. Cu(I) complexes show Cu(II)/Cu(I) quasireversible redox couple while Ag(I) complexes exhibit deposition of Ag(0) on the electrode surface during cyclic voltammetric experiments. gaussian 03 computations of representative complexes have been used to determine the composition and energy of molecular levels. An attempt has been made to explain solution spectra and redox properties of the complexes.  相似文献   

16.
The bromo-carbonyls fac-BrMn(CO)3(diphos)(diphos  Ph2P(CH2)nPPh2 for n = 1(dpm), 2(dpe), 3(dpp) and 4(dbp)) react with AgClO4 in dichloromethane solution to give the neutral fac-O3ClOMn(CO)3(diphos). The reaction of the latter complexes at room temperature with a variety of ligands L  phosphines (PR3), phosphites (P(OR)3), pyridine (Py), acetonitrile (MeCN), tetrahydrothiophene (THT) or acetone (Me2CO) leads to the cationic species fac-[Mn(CO)3(diphos)L]ClO4 (or to the [Mn(CO)4(diphos))]ClO4, when L  CO). When L is a phosphorus ligand, the cationic fac-tricarbonyls isomerize upon heating to the mer isomers, which could only be isolated by this method for diphos  dpm, the reaction being accompanied by decomposition in the other cases. UV irradiation of the mer-[Mn(CO)3(diphos)L]ClO4 in the presence of a large excess of L gives the corresponding trans-[Mn(CO)2(diphos)L2]ClO4.  相似文献   

17.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

18.
Summary The use of [RhCl(CO)(PPh3)]2 as a precursor for the synthesis of complexes of the types [Rh(CO)L2(PPh3)]A (A = [ClO4] or [BPh4]; L = pyridine type ligand) and [Rh(CO)(L-L)(PPh3)]A (A = [ClO4] or [BPh4]; L-L = bidentate nitrogen donor) and the preparation of several complexes of the types [Rh(CO)L(PPh3){P(p-RC6H4)3}]BPh4 and [Rh(CO)(phen)(PPh3){P(p-RC6H4)3}]A (A = [ClO4] or [BPh4]; R = H or Me) is described.Author to whom all correspondence should be directed.  相似文献   

19.
The DFT B3LYP method was used to optimize the geometries, calculate the IR spectra, and analyze the electronic structures of carbonyl(carboxylato)(phosphine)rhodium(I) complexes, namely, trans-[Rh(Cl)(CO)(PPh3)2], trans-[Rh(OCOR)(CO)(PPh3)2] (R = H, CH3, and CF3), and trans-[Rh(OCOH)(CO)(PX3)2], and free PX3 molecules (X = H, F, CH3, i-Pr, Cy, and Ph). A linear correlation between v(CO) in the IR spectra of trans-[Rh(OCOH)(CO)(PX3)2] and the HOMO energy of the free PX3 molecule was found for phosphines with nonaromatic substituents X. It was concluded that the electronic state of the CO group is mainly determined by the σ-donor properties of phosphines. The distinctive features of the electronic structure of triphenylphosphine are discussed.  相似文献   

20.
Summary Monocarbonyls of manganese(I) with two chelating diphosphinestrans-[Mn(CO)(diphos)2(L)]A, [diphos = 1,2-bis(diphenylphosphino)ethane, dppe, or bis(diphenylphosphino)methane, dppm; L=nitriles, NCR (NCMe, NCEt, NCPh, or NCCH2Ph), dinitriles, NCGCN (NCCH2CN, NCCH2CH2CN, oro-(NC)2C6H4), isonitriles, CNR, (CNPh, or CNBut); A = C1O 4 or PF 6 ],trans-[(Mn(CO)(dppm)2)2(-NCCH2CH2CN)](ClO4)2 and the monocarbonyl with one diphosphine,mer-[Mn(CO)(dppe)(CNBut)3]ClO4, have been prepared fromtrans-[Mn(CO)(diphos)2Br].In this paper we have adopted the convention that gives positive shift to signals at higher frequency of ext. H3PO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号