首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Complexes of platinum(II) with 2-(acetylamino)benzoic acid, 2-(benzoylamino)benzoic acid, maleanilic acid, malea-1-naphthanilic acid, 2-(phenylamino)benzoic acid, 2-[(2-aminophenylamino)carbonyl]benzoic acid, 2-(aminobenzoyl)benzoic acid, 2-[1-naphthalenylamino)-carbonyl]benzoic acid, 2-(2-aminobenzoylamino)-benzoic acid have been prepared and characterized by elemental analysis, molar conductivity measurements, thermal data and i.r., electronic and n.m.r. spectra.  相似文献   

2.
Summary Complexes of palladium(II) with 2-(acetylamino)benzoic acid, 2-(benzoylamino)benzoic acid, 2-[2-aminobenzoylamino]benzoic acid, 2-hydroxy benzanilide, 2-mercapto benzanilide, maleanilic acid, 2-(amino carbonyl)benzoic acid, 2-[(phenylamino)carbonyl]benzoic acid, 2-[(1-naphthalenylamino)carbonyl]benzoic acid, 2-[(2-aminophenylamino)carbonyl]benzoic acid, salicylanilide, 2-(aminobenzoyl)benzoic acid and 2-aminobenzamide have been prepared and characterized by chemical analyses, molar conductivity measurements, thermal data and i.r., electronic and n.m.r. spectra.  相似文献   

3.
Summary Iron(II) complexes of the type [FeL2X2] (L=bidentate ligand, X=H2O, Cl, or SCN) and [FeL2] (L=tridentate ligand) with polydentate ligands derived from 2-(acetylamino)benzoic acid, 2-(benzoylamino)benzoic acid,2-[2-aminobenzoylamino]benzoic acid, 2-[amino-carbonyl]benzoic acid, 2-[(phenylamino)carbonyl]-benzoic acid, 2-[aminobenzoyl]benzoic acid and 2-aminobenzanilide have been synthesized and characterized by elemental analyses, conductivity, magnetic susceptibility and i.r., electronic, n.m.r., and Mossbauer spectral studies. The different modes of ligand chelation and the stereochemistry around the metal ion are discussed. The small range of isomer shift values for iron(II) complexes confirms the similar geometry for all the complexes.  相似文献   

4.
Five complexes [WO(NCS)4L–L] (where L–L = benzoic acid[1-(Furan-2-yl)methylene]hydrazide(BFMH), benzoic acid[(thiophen-2-yl)methylene]hydrazide(BTMH), benzoic acid[1-(thiophen-2-yl)ethylidene]hydrazide(BTEH), benzoic acid(phenylmethylene)hydrazide(BPMH) and benzoic acid[1-(anisol-3-yl) methylene]hydrazide(BAMH)) have been prepared by reaction of ammonium tetraisothiocyanatodioxotungstate(VI) with the corresponding ligand in aqueous medium in the presence of hydrochloric acid. The complexes have been characterized by elemental analysis, molar conductivity, magnetic moment measurements, IR, electronic spectra, thermogravimetric analysis TGA/DTA and 1H NMR.  相似文献   

5.
A series of putative mono- and binuclear copper(II) complexes, of general formulas [CuL](ClO(4)) and [Cu(2)L](ClO(4))(2), respectively, have been synthesized from lateral macrocyclic ligands that have different compartments, originated from their corresponding precursor compounds (PC-1, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclotetradecane; and PC-2, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclopentadecane). The precursor compound PC-1 crystallized in the triclinic system with space group P(-)1. The mononuclear copper(II) complex [CuL(1a)](ClO(4)) is crystallized in the monoclinic system with space group P2(1)/c. The binuclear copper(II) complex [Cu(2)L(2c)](ClO(4))(2) is crystallized in the triclinic system with space group P(-)1; the two Cu ions have two different geometries. Electrochemical studies evidenced that one quasi-reversible reduction wave (E(pc) = -0.78 to -0.87 V) for mononuclear complexes and two quasi-reversible one-electron-transfer reduction waves (E(1)(pc) = -0.83 to -0.92 V, E(2)(pc) = -1.07 to -1.38 V) for binuclear complexes are obtained in the cathodic region. Room-temperature magnetic-moment studies convey the presence of antiferromagnetic coupling in binuclear complexes [mu(eff) = (1.45-1.55)mu(B)], which is also suggested from the broad ESR spectra with g = 2.10-2.11, whereas mononuclear complexes show hyperfine splitting in ESR spectra and they have magnetic-moment values that are similar to the spin-only value [mu(eff) = (1.69-1.72)mu(B)]. Variable-temperature magnetic susceptibility study of the complex shows that the observed -2J value for the binuclear complex [Cu(2)L(1b)](ClO(4))(2) is 214 cm(-1). The observed initial rate-constant values of catechol oxidation, using complexes as catalysts, range from 4.89 x 10(-3) to 5.32 x 10(-2) min(-1) and the values are found to be higher for binuclear complexes than for the corresponding mononuclear complexes.  相似文献   

6.
A series of Cu(II) complexes of the thiosemicarbazone, 3-azabicyclo[3.2.2]-nonene-3-thiocarboxylic acid 2-[1-(2-pyridinyl)ethylidene]hydrazide(HL) and the corresponding N-oxide (HLO) have been prepared and characterized. Both ligands undergo deprotonation and appear to coordinate via the thione sulfur, the imine nitrogen and the pyridyl nitrogen (or N-oxide oxygen). A single anionic ligand such as Cl?, Br?, NCS? and N?3 completes the bonding to the Cu(II) center of these 4-coordinate complexes. When the complexes are prepared using Cu(II) perchlorate, the solids isolated contain a neutral thiosemicarbazone ligand as well as the deprotonated ligand. The solids are primarily characterized by IR, electronic and electron spin resonance spectroscopy. In addition, electronic and ESR spectra of their chloroform solutions were recorded. Most of the solids (except the nitrates) were unaltered upon dissolution. Simulation of the solution ESR spectra was used to estimate the coupling constants of the various coordinated nuclei.  相似文献   

7.
Li D  Li S  Yang D  Yu J  Huang J  Li Y  Tang W 《Inorganic chemistry》2003,42(19):6071-6080
The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.  相似文献   

8.
The synthetic methods of novel Cu(II) and adduct complexes, with selective azodyes containing nitrogen and oxygen donor ligands have been developed, characterized and presented. The prepared complexes fall into the stoichiometric formulae of [Cu(L(n))(2)](A) and [Cu(L(n))(2)(Py)(2)](B), where two types of complexes were expected and described. In type [(A) (1:2)] the chelate rings are six-membered/four coordinate, whereas in type [(B) (1:2:2)] they are six-membered/six coordinate. The important bands in the IR spectra and main (1)H NMR signals are tentatively assigned and discussed in relation to the predicted assembly of the molecular structure. The IR data of the azodye ligands suggested the existing of a bidentate binding involving azodye nitrogen and C-O oxygen atom of enolic group. They also showed the presence of Py coordinating with the metal ion. The coordination geometries and electronic structures are determined from the framework of the proposed modeling of the formed novel complexes. The complexes (1-5) exist in trans-isomeric [N,O] solid form, while adduct complexes (6-10) exist in trans isomeric (Py) form. The square planar/octahedral coordination geometry of Cu(II)/adduct is made up of an N-atom of azodye, the deprotonated enolic O-atom and two Py. The azo group was involved in chelation for all the prepared complexes. ESR spectra show the simultaneous presence of a planar trans and a nearly planar cis isomers in the 1:2 ratio for all N,O complexes [Cu(L(n))(2)]. The ligands in the dimmer are stacked over one another. In the solid state of azo-rhodanine, the dimmers have inter- and intramolecular hydrogen bonds. Interactions between the ligands and Cu(II) are also discussed.  相似文献   

9.
Mononuclear and binuclear copper(II) complexes (1-8) with two ONS donor thiosemicarbazone ligands {salicylaldehyde 3-hexamethyleneiminyl thiosemicarbazone [H2L1] and salicylaldehyde 3-tetramethyleneiminyl thiosemicarbazone [H2L2]} have been prepared and physico-chemically characterized. IR, electronic and EPR spectra of the complexes have been obtained. The thiosemicarbazones bind to metal as dianionic ONS donor ligands in all the complexes except in [Cu(HL1)2] (2) and [Cu(HL2)2] (6). In compounds 2 and 6 the ligands are coordinated as monoanionic HL- ones. The magnetic susceptibility measurements indicate that all the complexes are paramagnetic. In complex [(CuL1)2] (1), the magnetic moment value is lower than the expected spin only value. In all the complexes g(||)>g( perpendicular)>2.0023 and G values within the range 2.5-3.5 are consistent with dx2-y2 ground state. The complexes were given the formula as [(CuL1)2] (1); [Cu(HL1)2] (2); [CuL1bpy] (3); [CuL1phen] (4); [CuL1gamma-pic].2H2O (5); [Cu(HL2)2] (6); [CuL2py].3H2O (7); [CuL2bipy] (8). The structure of the compound 8 have been solved by single crystal X-ray crystallography and was found to be distorted square pyramid around copper(II) ion.  相似文献   

10.
A series of new mono and binuclear copper (II) complexes [Cul]X(2)and [Cu(2)lX(2)] where 1 = L(1), L(2) and L(3) are the macrocyclic ligands. In mononuclear complexes the geometry of Cu(II) ion is distorted squareplanar and in binuclear complexes the geometry of Cu(II) is tetragonal. The synthesized complexes were characterized by spectroscopic (IR,UV-vis and ESR) techniques. Electrochemical studies of the complexes reveals that all the mononuclear Cu(II) complexes show a single quasireversible one-electron transfer reduction wave (E(pc) = -0.76 to -0.84V) and the binuclear complexes show two quasireversible one electron transfer reduction waves (E(pc)(1) = -0.86 to -1.01V, E(pc)(2) = -1.11 to -1.43V) in cathodic region. The ESR spectra of mononuclear complexes show four lines with nuclear hyperfine splittings with the observed g(11) values in the ranges 2.20-2.28, g( perpendicular) = 2.01-2.06 and A(11) = 125-273. The binuclear complexes show a broad ESR spectra with g = 2.10-2.11. The room temperature magnetic moment values for the mononuclear complexes are in the range [mu(eff) = 1.70-1.72BM] and for the binuclear complexes the range is [mu(eff) = 1.46-1.59BM].  相似文献   

11.
The structure and H(2)O(2)-reactivity of a series of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine (TPA) derivatives having a phenyl group at the 6-position of pyridine donor group(s) [(6-phenylpyridin-2-yl)methyl]bis[(pyridin-2-yl)methyl]amine (Ph(1)TPA), bis[(6-phenylpyridin-2-yl)methyl][(pyridin-2-yl)methyl]amine (Ph(2)TPA), and tris[(6-phenylpyridin-2-yl)methyl]amine (Ph(3)TPA) have systematically been examined to get insights into the aromatic substituent (6-Ph) effects on the coordination chemistry of TPA ligand system. The X-ray crystallographic analyses have revealed that [Cu(II)(TPA)(CH(3)CN)](ClO(4))(2) (CuTPA) and [Cu(II)(Ph(3)TPA)(CH(3)CN)](ClO(4))(2) (3) exhibit a trigonal bipyramidal structure, whereas [Cu(II)(Ph(1)TPA)(CH(3)CN)](ClO(4))(2) (1) shows a slightly distorted square pyramidal structure and [Cu(II)(Ph(2)TPA)(CH(3)CN)](ClO(4))(2) (2) has an intermediate structure between trigonal bipyramidal and square pyramidal. On the other hand, the UV-vis and ESR data have suggested that all the copper(II) complexes have a similar trigonal bipyramidal structure in solution. The redox potentials of CuTPA, 1, 2, and 3 have been determined as E(1/2) = -0.34, -0.28, -0.16, and -0.04 mV vs Ag/AgNO(3), respectively, demonstrating that introduction of each 6-Ph group causes positive shift of E(1/2) about 0.1 V. Notable difference in H(2)O(2)-reactivity has been found among the copper(II) complexes. Namely, CuTPA and 1 afforded mononuclear copper(II)-hydroperoxo complexes CuTPA-OOH and 1-OOH, respectively, whereas complex 2 provided bis(mu-oxo)dicopper(III) complex 2-oxo. On the other hand, copper(II) complex 3 was reduced to the corresponding copper(I) complex 3(red). On the basis of the H(2)O(2)-reactivity together with the X-ray structures and the redox potentials of the copper(II) complexes, the substituent effects of 6-Ph are discussed in detail.  相似文献   

12.
The imidazole-bridged binuclear copper(II) complex, [(Cl)2(imH)2Cu(imH)2Cu(bipy)(Cl)2] and the trinuclear copper (II) complex [(Cl)2(bipy)Cu(imH)2Cu(imH)2Cu(bipy)(Cl)2] have been synthesized by direct coupling between [Cu(imH)4(Cl)2] and [Cu(bipy)Cl2] in the appropriate stoichiometric ratios. The complexes show subnormal magnetic moments and e.p.r. spectra, characteristic of the triplet state. The antiferromagnetic coupling constant, J, has been obtained for both the complexes.  相似文献   

13.
A series of copper(II) complexes (CuL2x) with new N-di-methylphenyl-3,5-Bu2t-salicylaldimines (L(x)H) were prepared and characterized by IR, UV/vis, 1H NMR, ESR, cyclic voltammetry techniques and chemical oxidation. L(x)H ligands have been found selectively bind to a Cu(II), rather than to Ni(II), Co(II), Mn(II), VO(IV), Zn(II) and Cd(II). ESR examinations of the CuL2x complexes demonstrate that they exist in magnetically diluted mononuclear or coupled triplet-state structures in the solid. The temperature dependent (113-283 K) intensity of the powder ESR spectra for some CuL2x is characteristic of ferromagnetic coupling (J > 0). The reduction potentials of CuL2x in DMSO are sensitive to aniline moieties. Chemical oxidation of CuL2x with (NH4)2[Ce(NO3)6] in CHCl3 and MeCN solutions at 300 K affords gradually disappearance of their ESR signals and dramatic changes in the electronic spectra as well as the appearance of new maximum bands at 530-672 (CHCl3) and 670-700 nm (MeCN), suggesting generation of Cu(II)-phenoxyl radical species.  相似文献   

14.

A tridentate ONN donor ligand, 5-methyl-3-(2-hydroxyphenyl)pyrazole; H2L, was synthesized by reaction of 2-(3-ketobutanoyl)phenol with hydrazine hydrate. The ligand was characterized by IR, 1H NMR and mass spectra. 1H NMR spectra indicated the presence of the phenolic OH group and the imine NH group of the heterocyclic moiety. Different types of mononuclear metal complexes of the following formulae [(HL)2M][sdot]xH2O (M=VO, Co, Ni, Cu, Zn and Cd), [(HL)2M(H2O)2] (M=Mn and UO2) and [(HL)LFe(H2O)2] were obtained. The Fe(III) complex, [(HL)LFe(H2O)2] undergoes solvatochromism. Elemental analyses, IR, electronic and ESR spectra as well as thermal, conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared metal complexes. A square-pyramidal geometry is suggested for the VO(IV) complex, square-planar for the Cu(II), Co(II) and Ni(II) complexes, octahedral for the Fe(III) and Mn(II) complexes and tetrahedral for the Zn(II) and Cd(II) complexes, while the UO2(VI) complex is eight-coordinate. Transmetallation of the UO2(VI) ion in its mononuclear complex by Fe(III), Ni(II) or Cu(II) ions occurred and mononuclear Fe(III), Ni(II) and Cu(II) complexes were obtained. IR spectra of the products did not have the characteristic UO2 absorption band and the electronic spectra showed absorption bands similar to those obtained for the corresponding mononuclear complexes. Also, transmetallation of the Ni(II) ion in its mononuclear complex by Fe(III) has occurred. The antifungal activity of the ligand and the mononuclear complexes were investigated.  相似文献   

15.
Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of multifunctional triaminoxime have been synthesized and characterized by elemental analyses, IR, UV–Vis spectra, magnetic moments, 1H- and 13C-NMR spectra for ligand and its Ni(II) complex, mass spectra, molar conductances, thermal analyses (DTA, DTG and TG) and ESR measurements. The IR spectral data show that the ligand is bi-basic or tri-basic tetradentate towards the metals. Molar conductances in DMF indicate that the complexes are non-electrolytes. The ESR spectra of solid copper(II) complexes [(HL)(Cu)2(Cl)2] · 2H2O (2) and [(L)(Cu)3(OH)3(H2O)6] · 7H2O (6) show axial symmetry of a d x²???y 2 ground state; however, [(HL)(Co)] (4) shows an axial type with d Z 2 ground state and manganese(II) complex [(L)(Mn)3(OH)3(H2O)6] · 4H2O (10) shows an isotropic type. The biological activity of the ligand and its metal complexes are discussed.  相似文献   

16.

Heterobi- and tri-nuclear complexes [LMM'Cl] and [(LM) 2 M'](M=Ni or Cu and M'=Mn, Fe or Co) have been synthesised. The heteronuclear complexes were prepared by stepwise reactions using two mononuclear Ni(II) and Cu(II) complexes of the general formula [HLM]·1/2H 2 O, as ligands towards the metal ions, Mn(II), Fe(III) and Co(II). The asymmetrical pentadentate (N 2 O 3 ) Schiff-base ligands used were prepared by condensing acetoacetylphenol and ethylenediamine, molar ratio 1 1, to yield a half-unit compound which was further condensed with either salicylaldehyde or naphthaldehyde to yield the ligands H 3 L 1 and H 3 L 2 which possess two dissimilar coordination sites, an inner four-coordinate N 2 O 2 donor set and an outer three-coordinated O 2 O set. 1 H NMR and IR spectra indicate that the Ni(II) and Cu(II) ions are bonded to the inner N 2 O 2 sites of the ligands leaving their outer O 2 O sites vacant for further coordination. Different types of products were obtained according to the type of metal ion. These products differ in stoichiometry according to the type of ligand in the parent compound. Electronic spectra and magnetic moments indicate that the structures of the parent Ni(II) and Cu(II) complexes are square-planar while the geometry around Fe(III), Mn(II) and Co(II) in their products are octahedral as elucidated from IR, UV-visible, ESR, 1 H NMR, mass spectrometry and magnetic moments.  相似文献   

17.
2,6-Diacetylpyridine and 1,2-diaminoethane in the presence of copper(II) and zinc(II) chlorides containing a few drops of acetic acid were condensed into compositions [CuLH2]2.2HCl.H2O (1), [Cu2LPyz]2.2HCl.4CH3COCH3 (2) [CuZnLPyz]2.2HCl.2CH3COCH3.10H2O (3) and [ZnL'Cl]3.3HCl.3H2O (4) substantiated by elemental analyses, IR, UV-vis, 1H NMR and FAB mass spectral data. Demetallation of a Ni(II) complex (isolated as above) afforded macrocyclic skeleton LH4, whereas L' symbolizes a skeleton of the ligand containing only ethylenediamine and 2,6-diacetylpyridine. Molecular structure optimization using MM2 force field calculations for the complexes revealed distorted square pyramidal geometry around Cu(II) centers in complexes 1 and 2 and tetrahedral geometry around Cu(II) and Zn(II) centers with different degrees of distortion in complex 3 whereas three Zn(II) atoms (each in distorted square pyramidal geometry) attached via Cl bridges form a cyclic structure in complex 4. In complexes 1 and 2,Cu-Cu = 2.63-2.66 angstroms indicated the possibility of coupling between the two Cu(II) centers which has been supported by lower magnetic moment as well as ESR spectra showing half-field signal.  相似文献   

18.
白令君  李盛荣  王耕霖 《化学学报》1989,47(12):1174-1177
以2-甲基喹 啉为配体合成了五种含有阴离子ClO~4^-或BF~4^-的铜(II)配合物, 利用元素分析、红外光谱、电子光谱、电导、热重谱、ESR谱及变温磁化率的测定推测了配合物的结构, 提出双核铜配合物中含有直线型单氧桥Cu(II)-O-Cu(II)键的可能构型。  相似文献   

19.
A new class of unsymmetrical end-off, aminomethylated N-methylpiperazine and aminomethylated diethanolamine binucleating ligands, 2-[bis(2-hydroxyethyl)aminomethyl]-6-[(4-methylpiperazin-1-yl)methyl]-4-methylphenol (HL1) and 2-[bis(2-hydroxyethyl)aminomethyl]-6-[(4-methylpiperazin-1-yl)methyl]-4-acetylphenol (HL2) were synthesized by following sequential aromatic Mannich reactions. Their mononuclear and binuclear Cu(II), Ni(II) and Zn(II) complexes have been synthesized and their formulation was confirmed by analytical and spectral analysis. The mononuclear Cu(II) complexes have a magnetic moment value close to the spin only value with four hyperfine EPR signals. The binuclear Cu(II) complexes have an antiferromagnetic interaction with a broad EPR signal. Electrochemical studies of the complexes reveal that all the redox processes are irreversible. Catecholase activity of Cu(II) complexes and the hydrolysis of 4-nitrophenylphosphate using Cu(II), Ni(II), and Zn(II) complexes were carried out. Spectral, magnetic, electrochemical, and catalytic behaviors of the complexes are compared on the basis of the p-substituent of the phenolic ring. Some of the complexes show significant growth inhibitory activity against pathogenic bacteria and fungi.  相似文献   

20.
Two Schiff bases, 1-acetylferrocene thiosemicarbazone (HL1) and 1,1′-diacetyl-ferrocene dithiosemicarbazone (H2L2) and their copper(II) complexes were prepared and characterized by elemental analysis, magnetic susceptibility, conductivity, and spectral (IR, UV–Vis, ESR) measurements The IR spectra showed that HL1 acts as neutral or monobasic bidentate ligand, coordinating to copper(II) through either thiono- or thiolo-sulphur and azomethine-N atoms, whereas H2L2 is a neutral or dibasic mononucleating or binucleating quadridentate ligand coordinating through the same atoms. Other spectral measurements indicate that complexes [(L1)2Cu], [(L2)Cu] and [(HL1)2Cu]X2, X?=?Cl, Br or ClO4 have square-planar geometry around copper(II) while [(HL1)CuX2] and [(H2L2)Cu2X4], X?=?Cl or Br, have distorted tetrahedral geometry. The biological activity studies of the complexes and the free ligands towards two gram positive and two gram negative bacteria and one fungal species have been studied and the potential is related to the nature and structure of the tested compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号