首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

2.
The kinetics of electron transfer for the reactions cis-[Ru(IV)(bpy)2(py)(O)]2+ + H+ + [Os(II)(bpy)3]2+ <==> cis-[Ru(III)(bpy)2(py)(OH)]2+ + [Os(III)(bpy)3]3+ and cis-[Ru(III)(bpy)2(py)(OH)]2+ + H+ + [Os(II)(bpy)3]2+ <==> cis-[Ru(II)(bpy)2(py)(H2O)]2+ + [Os(III)(bpy)3]3+ have been studied in both directions by varying the pH from 1 to 8. The kinetics are complex but can be fit to a double "square scheme" involving stepwise electron and proton transfer by including the disproportionation equilibrium, 2cis-[Ru(III)(bpy)2(py)(OH)]2+ <==> (3 x 10(3) M(-1) x s(-1) forward, 2.1 x 10(5) M(-1) x s(-1) reverse) cis-[Ru(IV)(bpy)2(py)(O)]2+ + cis-[Ru(II)(bpy)2(py)(H2O)]2+. Electron transfer is outer-sphere and uncoupled from proton transfer. The kinetic study has revealed (1) pH-dependent reactions where the pH dependence arises from the distribution between acid and base forms and not from variations in the driving force; (2) competing pathways involving initial electron transfer or initial proton transfer whose relative importance depends on pH; (3) a significant inhibition to outer-sphere electron transfer for the Ru(IV)=O2+/Ru(III)-OH2+ couple because of the large difference in pK(a) values between Ru(IV)=OH3+ (pK(a) < 0) and Ru(III)-OH2+ (pK(a) > 14); and (4) regions where proton loss from cis-[Ru(II)(bpy)2(py)(H2O)]2+ or cis-[Ru(III)(bpy)2(py)(OH)]2+ is rate limiting. The difference in pK(a) values favors more complex pathways such as proton-coupled electron transfer.  相似文献   

3.
Anuse MA  Mote NA  Chavan MB 《Talanta》1983,30(5):323-327
The solvent extraction separation of Pt(IV), Pd(II), Os(VIII), Ru(III) and Au(III) from one another and also from Rh(III) and Ir(III) with 1-(2'-nitro-4'-tolyl)-4,4,6-trimethyl-(1H, 4H)-2-pyrimidinethiol has been investigated. Photometric procedures have been developed for the determination of Pd(II), Os(VIII) and Ru(III) with the same reagent. The reagent allows the enrichment of Pd(II) and Au(III) at the trace level from a large volume of aqueous medium even in the presence of base metals. The method can be used for the determination of platinum metals and gold in alloys.  相似文献   

4.
The intervalence charge transfer (IVCT) properties of the mixed-valence forms of the diastereoisomers of the dinuclear [[Ru(bpy)2](mu-HAT)[M(bpy)2]]5+ (M = Ru or Os) complexes and the trinuclear heterochiral [[Ru(bpy)2]2[Os(bpy)2](mu-HAT)]n+ (n = 7, 8; HAT = 1,4,5,8,9,12-hexaazatriphenylene; bpy = 2,2'-bipyridine) species display a marked dependence on the nuclearity and extent of oxidation of the assemblies, while small differences are also observed for the diastereoisomers of the same complex in the dinuclear cases. The mixed-valence heterochiral [[Ru(bpy)2]2[Os(bpy)2](mu-HAT)]n+ (n = 7, 8) forms exhibit IVCT properties that are intermediate between those of the diastereoisomeric forms of the localized hetero-dinuclear complex [[Ru(bpy)2](mu-HAT)[Os(bpy)2]]5+ and the borderline localized-to-delocalized homo-trinuclear complex [[Ru(bpy)2]3(mu-HAT)]n+ (n = 7, 8). The near-infrared (NIR) spectrum of the +7 mixed-valence species exhibits both interconfigurational (IC) and IVCT transitions which are quantitatively similar to those in [[Ru(bpy)2](mu-HAT)[Os(bpy)2]]5+ and are indicative of the localized mixed-valence formulation [[Ru(II)(bpy)2]2[Os(III)(bpy)2](mu-HAT)]7+. The +8 state exhibits a new band attributable to an IVCT transition in the near-infrared region.  相似文献   

5.
The complexes [Ru((t)Bu(2)bipy)(bpym)X(2)] (X = Cl, NCS) and [M((t)Bu(2)bipy)(2)(bpym)][PF(6)](2) (M = Ru, Os) all have a low-energy LUMO arising from the presence of a 2,2'-bipyrimidine ligand, and consequently have lower-energy (1)MLCT and (3)MLCT states than analogous complexes of bipyridine. The vacant site of the bpym ligand provides a site at which [Ln(diketonate)(3)] units can bind to afford bipyrimidine-bridged dinuclear Ru-Ln and Os-Ln dyads; four such complexes have been structurally characterised. UV/Vis and luminescence spectroscopic studies show that binding of the Ln(III) fragment at the second site of the bpym ligand reduces the (3)MLCT energy of the Ru or Os fragment still further. The result is that in the dyads [Ru((t)Bu(2)bipy)X(2)(mu-bpym)Ln(diketonate)(3)] (X = Cl, NCS) and [Os((t)Bu(2)bipy)(2)(mu-bpym)Ln(diketonate)(3)][PF(6)](2) the (3)MLCT is too low to sensitise the luminescent f-f states of Nd(III) and Yb(III), but in [Ru((t)Bu(2)bipy)(2)(mu-bpym)Ln(diketonate)(3)][PF(6)](2) the (3)MLCT energy of 13,500 cm(-1) permits energy transfer to Yb(III) and Nd(III) resulting in sensitised near-infrared luminescence on the microsecond timescale.  相似文献   

6.
Slow evaporation of aqueous solutions containing mixtures of Na 2[Os(phen)(CN) 4], Ln(III) salts (Ln = Pr, Nd, Gd, Er, Yb), and (in some cases) an additional ligand such as 1,10-phenanthroline (phen) or 2,2'-bipyrimidine (bpym) afforded crystalline coordination networks in which the [Os(phen)(CN) 4] (2-) anions are coordinated to Ln(III) cations via Os-CN-Ln cyanide bridges. The additional diimine ligands, if present, also coordinate to the Ln(III) centers. Several types of structure have been identified by X-ray crystallographic studies. Photophysical studies showed that the characteristic emission of the [Os(phen)(CN) 4] (2-) chromophore, which occurs at approximately 680 nm in this type of coordination environment with a triplet metal-to-ligand charge transfer ( (3)MLCT) energy content of approximately 16 000 cm (-1), is quenched by energy transfer to those Ln(III) centers (Pr, Nd, Er, Yb) that have low-lying f-f states capable of accepting energy from the Os(II)-based (3)MLCT state. Time-resolved studies on the residual (partially quenched) Os(II)-based luminescence allowed the rates of Os(II) --> Ln(III) energy transfer to be evaluated. The measured rates varied substantially, having values of >5 x 10 (8), approximately 1 x 10 (8), and 2.5 x 10 (7) s (-1) for Ln = Nd, Er or Yb, and Pr, respectively. These differing rates of Os(II) --> Ln(III) energy transfer can be rationalized on the basis of the availability of f-f states of the different Ln(III) centers that are capable of acting as energy acceptors. In general, the rates of Os(II) --> Ln(III) energy transfer are an order of magnitude faster than the rates of Ru(II) --> Ln(III) energy transfer in a previously described series of [Ru(bipy)(CN) 4] (2-)/Ln(III) networks. This is ascribed principally to the lower energy of the Os(II)-based (3)MLCT state, which provides better spectroscopic overlap with the low-lying f-f states of the Ln(III) ions.  相似文献   

7.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

8.
Ruthenium(III) has been efficiently extracted from 0.05 M sodium succinate at pH 9.5 by 2-octylaminopyridine in xylene and stripped with aqueous 10% (w/v) thiourea solution and determined spectrophotometrically. Various parameters viz., pH, weak acid concentration, reagent concentration, stripping agents, contact time, loading capacity, aq.: org. volume ratio, solvent has been thoroughly investigated for quantitative extraction of ruthenium(III). The utility of method was analyzed by separating the ruthenium(III) from binary mixture along with the base metals like Cu(II), Ag(I), Fe(II), Co(II), Bi(III), Zn(II), Ni(II), Se(IV), Te(IV), Al(III) and Hg(II) as well as platinum group metals (PGMs). Ruthenium(III) was also separated from ternary mixtures like Os(VIII), Pd(II); Pd(II), Pt(IV); Pd(II), Au(III); Pd(II), Cu(II); Fe(II), Cu(II); Ni(II), Cu(II); Co(II), Ni(II); Se(IV), Te(IV); Rh(III), Pd(II); Fe(III), Os(VIII). The stoichiometry 1: 2: 1 (metal: succinate: extractant) of the proposed complex was determined by slope analysis method by plotting graph of logD [Ru(III)] versus logC [2-OAP] and logD [Ru(III)] versus logC [succinate]. The interference of various cations and anions has been studied in detail and the statistical evaluations of the experimental results are reported. The method was successfully applied for the analysis of ruthenium in various catalysts, synthetic mixtures corresponding to the composition of alloys and minerals.  相似文献   

9.
The complexes [(H3N)5Ru(II)(mu-NC)Mn(I)Lx]2+, prepared from [Ru(OH2)(NH3)5]2+ and [Mn(CN)L(x)] {L(x) = trans-(CO)2{P(OPh)3}(dppm); cis-(CO)2(PR3)(dppm), R = OEt or OPh; (PR3)(NO)(eta-C5H4Me), R = Ph or OPh}, undergo two sequential one-electron oxidations, the first at the ruthenium centre to give [(H3N)5Ru(III)(mu-NC)Mn(I)Lx]3+; the osmium(III) analogues [(H3N)5Os(III)(mu-NC)Mn(I)Lx]3+ were prepared directly from [Os(NH3)5(O3SCF3)]2+ and [Mn(CN)Lx]. Cyclic voltammetry and electronic spectroscopy show that the strong solvatochromism of the trications depends on the hydrogen-bond accepting properties of the solvent. Extensive hydrogen bonding is also observed in the crystal structures of [(H3N)5Ru(III)(mu-NC)Mn(I)(PPh3)(NO)(eta-C5H4Me)][PF6]3.2Me2CO.1.5Et2O, [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)(dppm)2-trans][PF6]3.5Me2CO and [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)2{P(OEt)3}(dppm)-trans][PF6]3.4Me2CO, between the amine groups (the H-bond donors) at the Ru(III) site and the oxygen atoms of solvent molecules or the fluorine atoms of the [PF6]- counterions (the H-bond acceptors).  相似文献   

10.
A series of quasilinear dinuclear complexes incorporating ruthenium(II)- and osmium(II)-tris(2,2'-bipyridine) units has been prepared in which the individual metal-containing moieties are separated by 3,4-dibutyl-2,5-diethenylthiophene spacers and end-capped by 3,4-dibutyl-2-ethenylthiophene subunits; related ruthenium(II) and osmium(II) mononuclear complexes have also been prepared where one bpy unit is likewise end-capped by 3,4-dibutyl-2-ethenylthiophene subunits [bpy = 2,2'-bipyridine]. Overall, mononuclear species, labeled here Ru and Os, and dinuclear species, RuRu, OsOs, and RuOs, have been prepared and investigated. Their electrochemical behavior has been studied in CH3CN solvent and reveals ethenylthiophene-centered oxidations (irreversible steps at > +1.37 V vs SCE), metal-centered oxidations (reversible steps at +1.30 V vs SCE for Ru(II/III) and +0.82 V vs SCE for Os(II/III)), and successive reduction steps localized at the substituted bpy subunits. The spectroscopic studies performed for the complexes in CH3CN solvent provided optical absorption spectra associated with transitions of ligand-centered nature (LC, from the bpy and ethenylthiophene subunits) and metal-to-ligand charge-transfer nature (MLCT), with the former dominating in the visible region (400-600 nm). While the constituent ethenylthiophene-bpy ligands are strong fluorophores (fluorescence efficiency in CH2Cl2 solvent, phi em = 0.49 and 0.39, for the monomer and the dimer, respectively), only weak luminescence is observed for each complex in acetonitrile at room temperature. In particular, (i) the complexes Ru and RuRu do not emit appreciably, and (ii) the complexes Os, OsOs, and RuOs exhibit triplet emission of 3Os --> L CT character, with phi em in the range from 10-3 to 10-4. These features are rationalized on the basis of the role of nonemissive triplet energy levels, 3Th, centered on the ethenylthiophene spacer. These levels appear to lie lower in energy than the 3Ru --> L CT triplet levels, and in turn higher in energy than the 3Os --> L CT triplet levels, along the sequence 3Ru --> L CT > 3Th > 3Os --> L CT.  相似文献   

11.
Reactions of [M(SR)(3)(PMe(2)Ph)(2)] (M = Ru, Os; R = C(6)F(4)H-4, C(6)F(5)) with CS(2) in acetone afford [Ru(S(2)CSR)(2)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 1; C(6)F(5), 3) and trans-thiolates [Ru(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 2; C(6)F(5), 4) or the isomers trans-thiolates [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 5; C(6)F(5), 7) and trans-thiolate-phosphine [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 6; C(6)F(5), 8) through processes involving CS(2) insertion into M-SR bonds. The ruthenium(III) complexes [Ru(SR)(3)(PMe(2)Ph)(2)] react with CS(2) to give the diamagnetic thiolate-thioxanthato ruthenium(II) and the paramagnetic ruthenium(III) complexes while osmium(III) complexes [Os(SR)(3)(PMe(2)Ph)(2)] react to give the paramagnetic thiolate-thioxanthato osmium(III) isomers. The single-crystal X-ray diffraction studies of 1, 4, 5, and 8 show distorted octahedral structures. (31)P [(1)H] and (19)F NMR studies show that the solution structures of 1 and 3 are consistent with the solid-state structure of 1.  相似文献   

12.
The use of 2-(6-methyl-2-benzothiazolylazo)-5-diethylaminophenolas a precolumn derivatizing reagent in the reversed-phase high performance liquid Chromatographic separation and determination of Ru(III), Rh(III), Os(IV), Ir(IV), Pt(II), Co(II), Ni(II) and Cu(II) is reported. When the mobile phase consists of methanol-water (76/24% v/v) and 20 mmol/l (pH 5.0) acetate buffer, the eight complexes can be separated within 35 min on a C8 column. The detection limits are Ru 7.0, Rh 5.1, Os 1.5, Ir 7.6, Pt 3.7, Co 0.62, Ni 0.14 and Cu 1.2 ng/ml, respectively, at a signal-to-noise ratio of 3. RSDs were typically Ca. 1%.  相似文献   

13.
The structural features of quinone ligands are diagnostic of charge. The o-benzoquinone, radical semiquinonate, and catecholate electronic forms have C-O bond lengths and a pattern of ring C-C bond lengths that point to a specific mode of coordination. This correlation between ligand charge and structure has been extended to iminoquinone and iminothioquinone ligands, giving a charge-localized view of electronic structure for complexes of redox-active metal ions. The radical semiquinonate form of these ligands has been found to be a surprisingly common mode of coordination; however, the paramagnetic character of the radical ligand is often obscured in complexes containing paramagnetic metal ions. In this report, diamagnetic iminosemiquinonate (isq) and iminothiosemiquinonate (itsq) complexes of ls-d(5) Ru(III) with related complexes of osmium are reported. With osmium, the Os(IV)-amidophenolate (ap) redox isomer is formed. Electrochemical and spectral properties are described for Ru(PPh(3))(2)(isq)Cl(2), Ru(PPh(3))(2)(itsq)Cl(2), Os(PPh(3))(2)(ap)Br(2), Os(PPh(3))(2)(atp)Br(2), and Os(PPh(3))(2)(ap)H(2). Crystallographic characterization of Ru(PPh(3))(2)(isq)Cl(2), Ru(PPh(3))(2)(itsq)Cl(2), and Os(PPh(3))(2)(ap)H(2) was used to assign charge distributions.  相似文献   

14.
The method of normal phase high-performance liquid chromatography has been applied to the separation and determination of Pd(II), Pt(II), Rh(III), Ir(IV), Ru(III) and Os(IV) as chelates with 8-hydroxyquinoline on a 62 x 2 mm column packed with Silasorb 600 5 mu silica gel by elution with methylene chloride-isopropyl alcohol mixture (97:3 v/v). The detection limits (ng per 5 mul), were Pd 0.3, Pt 1.0, Rh 1.0, Ir 5.0, Ru 1.5, Os 25. The separation time was 12 min at a flow-rate of 0.1 ml/min.  相似文献   

15.
Reaction of Ru3(CO)12, with 2-(2'-pyridyl)benzimidazole (HPBI) resulted in the formation of Ru(CO)3(HPBI) (I) complex. In presence of pyridine or dipyridine, the two derivatives [Ru(CO)3(HPBI)].Py (II) and [Ru(CO)3(HPBI)].dpy (III) were isolated. The corresponding reactions of Os3(CO)12 yielded only one single product; Os(CO)2(HPBI)2 (IV). Spectroscopic studies of these complexes revealed intramolecular metal to ligand CT interactions. Reactions of RuCl3 with HPBI gave three distinct products; [Ru(HPBI)2Cl2]Cl (V), [Ru(HPBI)(dipy)Cl2]C1 (VI) and [Ru(PBI)2(py)2]Cl (VII). The UV-vis studies indicated the presence of intramolecular ligand to metal CT interactions. Electrochemical investigation of the complexes showed some irreversible, reversible and quasi-reversible redox reactions due to tautomeric interconversions through electron transfer.  相似文献   

16.
A star-shaped Ru/Os tetranuclear complex, in which a central Os unit is linked to three peripheral Ru units by 4,4'-azobis(2,2'-bipyridine) (azobpy) bridging ligands, was prepared to examine the unique photodynamics regulated by its redox state. The Ru/Os tetranuclear complex exhibits Ru-based luminescence at 77 K, whereas the three-electron reduction (one for each azobpy) of the Ru/Os complex results in luminescence from the Os unit. The photoexcited state of the Ru/Os complex rapidly decays into low energy metal-to-ligand charge-transfer states, in which the excited electron is localized in the azobpy ligand in the form of azobpy(.-). Upon the one-electron reduction of the azobpy ligands, the above-mentioned low-energy states become unavailable to the photoexcited complex. As a result, an energy transfer from the Ru-based excited state to the Os-based excited state becomes possible. Ultrafast transient absorption measurements revealed that the energy transfer process consists of two steps; intramolecular electron transfer from the terminal bipyridine ligand (bpy(.-)) to form azobpy(2-) followed by a metal-to-metal electron transfer. Thus, the Ru/Os tetranuclear complex collects light energy into the central Os unit depending on the redox state of the bridging ligands, qualifying as a switchable antenna.  相似文献   

17.
Donaldson EM 《Talanta》1976,23(6):411-416
The chloroform extraction of 32 elements (Fe, Co, Ni, Zn, Cd, Ge, Sn, Pb, V, As, Sb, Bi, Cu, Ag, Au, Mn, Re, Ga, In, Tl, Ce, Se, Te, Cr, Mo, U, Pt, Pd, Rh, Ir, Ru and Os) from O.1-10M hydrochloric acid media in the presence of potassium ethyl xanthate has been studied. The oxidation states in which some elements react, and potential analytical separations, are discussed. Pd(II), As(III) and Se(IV) are completely extracted as ethyl xanthate complexes, Te(IV) is almost completely extracted, and Au(III) is largely extracted over the range of acid concentration investigated. Mn(II), Zn, Rh(III), Ir(IV), Ru(III), Os(IV), Cr(III), Cr(VI), Ce(III) and Ce(IV) are not extracted. Ge is partly extracted from 6-10M media as the chloro-complex. Depending on the acid concentration, the remaining elements are all partially extracted as xanthate complexes.  相似文献   

18.
Wang H  Zhang HS  Cheng JK 《Talanta》1999,48(1):1-7
Five platinum group metals, Pt(II), Ir(IV), Ru(III), Rh(III) and Os(IV) have been separated by high performance liquid chromatography (HPLC) using 2-(2-thiazolylazo)-5-diethylaminophenol (TADAP) as a precolumn derivatizing reagent. The whole analysis was completed on a C(18) column in 23 min at 574 nm, with the mobile phase of methanol-water (69.5:30.5, v:v) containing 4 mmol l(-1) tetrabutylammonium bromide (TBA Br) and 10 mmol l(-1) pH6.0 acetate buffer. The detection limits (S/N=3) of Pt(II), Ir(IV), Ru(III), Rh(III) and Os(IV) were 0.39, 9.74, 1.64, 0.29 and 1.29 ng ml(-1), respectively. This method was rapid, sensitive and simple.  相似文献   

19.
Oximidobenzotetronic acid is recommended for the separation and gravimetric determination of palladium and cobalt An ethanolic solution of the reagent quantitatively precipitates palladium(II) from solutions which are 0.75 N in acid up to pH 5.1, the complex is weighed as Pd(C9H5NO4)2. Cobalt(II) can be determined in the filtrate after the precipitation of palladium. With 0.5 N acid solutions, no interference was found from Pt(IV), Ir(IV), Rh(III), Ru(III), Os(IV), Au(III), Ag(I), Cu(II), Fe(III), Ni(II), Hg(II). Pb(II), Bi(III), Cd(II), As(V), Se(VI), Te(IV), Mo(VI), Sb(III), Al(III), Cr(III), Zn(II), Ti(IV), Zr(IV). acetate, oxalate, citrate, tartrate, phosphate and fluoride.  相似文献   

20.
The electronic absorption spectra, luminescence spectra and lifetimes (in MeCN at room temperature and in frozen n-C3H7CN at 77 K), and electrochemical potentials (in MeCN) of the novel dinuclear [(tpy)Ru(3)Os(tpy)]4+ and trinuclear [(tpy)Ru(3)Os(3)Ru(tpy)]6- complexes (3 = 2,5-bis(2,2':6',2'-terpyridin-4-yl)thiophene) have been obtained and are compared with those of model mononuclear complexes and homometallic [(tpy)Ru(3)Ru(tpy)]4+, [(tpy)Os(3)Os(tpy)]4+ and [(tpy)Ru(3)Ru(3)Ru(tpy)]6+ Complexes. The bridging ligand 3 is nearly planar in the complexes, as seen from a preliminary X-ray determination of [(tpy)Ru(3)Ru(tpy)][PF6]4, and confers a high degree of rigidity upon the polynuclear species. The trinuclear species are rod-shaped with a distance of about 3 nm between the terminal metal centres. For the polynuclear complexes, the spectroscopic and electrochemical data are in accord with a significant intermetal interaction. All of the complexes are luminescent (phi in the range 10(-4)-10(-2) and tau in the range 6-340 ns, at room temperature), and ruthenium- or osmium-based luminescence properties can be identified. Due to the excited state properties of the various components and to the geometric and electronic properties of the bridge, Ru --> Os directional transfer of excitation energy takes place in the complexes [(tpy)Ru(3)Os(tpy)]4+ (end-to-end) and [(tpy)Ru(3)Os(3)Ru(tpy)]6+ (periphery-to-centre). With respect to the homometallic case, for [(tpy)Ru(3)Os(3)Ru(tpy)]6+ excitation trapping at the central position is accompanied by a fivefold enhancement of luminescence intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号