首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
This paper presents EPR, and optical absorption studies on [Cu(tren)NCS]SCN and [Cu(Me6tren)NCS]SCN in solutions. Expressions derived by Barbucci and Bencini are evaluated. It is shown that the molecular motion of the complexes is anisotropic and nondiffusional.  相似文献   

2.
Results are presented for mixed ligand copper(II) complexes of 3,3'-diaminodipropyl-amine and 1,3-diaminopropane studied by electron paramagnetic resonance. The spectra of the complexes in polycrystalline powder form and in frozen solutions of N,N'-dimethyl-formamide indicate that the complexes [Cu(dpt)tn]Cl2·H2O and [Cu(dpt)tn]Br2 have a square based pyramidal CuN5 chromophore and that the complexes [Cu(dpt)tn]I2 and [Cu(dpt)tn](ClO4)2 possess a compressed trigonal bipyramidal CuN5 chromophore.  相似文献   

3.
4.
The ligand 1,4-dibenzoyl-3-thiosemicarbazide (DBtsc) forms complexes [M(DBtsc-H)(SCN)] [M = Mn(II), Co(II) or Zn(II)], [M(DBtsc-H) (SCN)(H2O)] [M = Ni(II) or Cu(II)], [M(DBtsc-H)Cl] [M = Co(II), Ni(II), Cu(II) or Zn(II)] and [Mn(DBtsc)Cl2], which have been characterized by elemental analyses, magnetic susceptibility measurements, UV/Vis, IR,1H and13C NMR and FAB mass spectral data. Room temperature ESR spectra of the Mn(II) and Cu(II) complexes yield <g> values, characteristic of tetrahedral and square planar complexes respectively. DBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.  相似文献   

5.
The reaction of cobalt(II), nickel(II), copper(II) chlorides and bromides with 3-thiophene aldehyde thiosemicarbazone (3TTSCH) leads to the formation of a series of new complexes: [Co(3TTSC)2], [Ni(3TTSC)2], [CuCl(3TTSC)]2, [CuBr(3TTSC)]2 and [CuBr2(3TTSCH)]. The crystal structures of the free ligand and of the compound [Ni(3TTSC)2] have been determined by X-ray diffraction methods. For all these complexes, the central ion is coordinated through the sulfur and the azomethine nitrogen atom of the thiosemicarbazone. [Co(3TTSC)2], [Ni(3TTSC)2] and [CuBr2(3TTSCH)] are mononuclear species, while [CuCl(3TTSC)]2 and [CuBr(3TTSC)]2 are binuclear complexes.  相似文献   

6.
The Influence of Ring Size on the Structure of Metal Chelates with Tridentate Ligands. IV. Palladium(II) and Platinum(II) Complexes of Pyridyl Substituted Dialkyl Sulfides and Amines [β-(Pyridyl-2)-ethyl]-[(pyridyl-2)-methyl]-amine(2,3-py2tri) forms planar palladium(II) complexes [Pd(2,3-py2tri)X]X (X = Cl, Br) occupying trans-positions as a tridentate ligand. An analogous behaviour is observed with bis[β-(pyridyl-2)-ethyl]-sulfide(3,3-py2Stri) in the chelate compounds [MeII(3,3-py2Stri)X]X (MeII = Pd, Pt; X = Cl, Br, J, SCN). On the other hand the rigid ligand bis[(pyridyl-2)-methyl]-sulfide(2,2-py2Stri) is only bidentate in the complexes MeII(2,2-py2Stri)X2 (MeII = Pd, Pt; X = Cl, Br, J, SCN), one pyridine group does not interact with the central atom. The reasons are the angular relations within the thioether group of 2,2-py2Stri which allow a tridentate coordination in a facial conformation (octahedral and trigonal-bipyramidal nickel(II) and copper(II) complexes), but not in a meridional one (planar palladium(II) and platinum(II) complexes). In Pt(2,2-py2Stri)(SCN)(NCS) one thiocyanato ligand is linked by sulfur, the other one by nitrogen.  相似文献   

7.
Reactions between nickel(II) and copper(II) salts [M(L) n ](ClO4)2 [L: 2-(pyrazole-1-ylmethyl)pyridine; n = 3 for Ni(II) and n = 2 for Ni(II) and Cu(II)] and LiTCNQ or mixture of LiTCNQ/TCNQ and Et3NH(TCNQ)2 yielded [Ni(L)3](TCNQ)2 · H2O, [Ni(L)2(TCNQ)2], [Ni(L)3](TCNQ)3, [Ni(L)2(TCNQ)3], and [Cu(L)2(TCNQ)3] · 3H2O. These complexes were characterized by infrared, electronic absorption, variable temperature magnetic moments and electron paramagnetic studies. Magnetic moments increase with increase in temperature attributed to contribution from TCNQ, which has also been examined by electron paramagnetic resonance.  相似文献   

8.
Binary and ternary complexes of copper(II) involving N,N,N′,N′-tetramethylethylene-diamine (Me4en) and various biologically relevant ligands containing different functional groups are investigated. The ligands (L) used are dicarboxylic acids, amino acids, peptides and DNA unit constituents. The ternary complexes of amino acids, dicarboxylic acids or peptides are formed by simultaneous reactions. The results showed the formation of Cu(Me4en)(L) complexes with amino acids and dicarboxylic acids. The effect of chelate ring size of the dicarboxylic acid complexes on their stability constants was examined. Peptides form both Cu(Me4en)(L) complexes and the corresponding deprotonated amide species Cu(Me4en)(LH−1). The ternary complexes of copper(II) with (Me4en) and DNA are formed in a stepwise process, whereby binding of copper(II) to (Me4en) is followed by ligation of the DNA components. DNA constituents form both 1:1 and 1:2 complexes with Cu(Me4en)2+. The concentration distribution of the complexes in solution was evaluated. [Cu(Me4en)(CBDCA)] and [Cu(Me4en)(malonate)] are isolated and characterized by elemental analysis and infrared measurements.  相似文献   

9.
The complexes of thiosemicarbazide (HTS) have been prepared and characterized by spectral, thermal and magnetic studies. The deprotonation constant of HTS and the formation constants of its complexes were evaluated pH-metrically. The Cu(II) acetate-HTS system gave high stability. The catalytic activity of Co(II), Ni(II) and Cu(II) complexes was tested to decompose H2O2. The Co(II) complex has no activity whereas the Cu(II) complex was found to be more active than Ni(II). The different Cu(II) complexes were tested; [Cu2(TS)(OH)2(OAc)] was highly active. All parameters affecting the reaction rate (concentration of H2O2, weight of catalyst, temperature and pH) were studied and the optimum conditions were evaluated. Attempts to increase the activity of [Cu2(TS)(HO)2(OAc)] by mixing with superconducting cuprate sample, Nd0.1Y0.9Ba2Cu3O7-δ, will be the subject of further studies.  相似文献   

10.

Reaction of the ligand 2,2′-diphenyl-4,4′-bithiazole (DPBTZ) with Hg(SCN)2, Tl(NO3)3, CuCl, and PdCl2 gives complexes with stoichiometry [Hg(DPBTZ)(SCN)2], [Tl(DPBTZ)(NO3)3], [Cu(DPBTZ)(H2O)Cl], and [Pd(DPBTZ)Cl2]. The new complexes were characterized by elemental analyses and infrared spectroscopy. The crystal structure of [Hg(DPBTZ)(SCN)2] determined by X-ray crystallography. The Hg atom in the title monomeric complex, (2,2′-diphenyl-4,4′-bithiazole)mercury(II)bisthiocyanate, [Hg(C18H12N2S2)(SCN)2], is four-coordinate having an irregular tetrahedral geometry composed of two S atoms of thiocyanate ions [Hg-S 2.4025(15) and 2.4073(15) Å] and two N atoms of 2,2′-diphenyl-4,4′-bithiazole ligand [Hg-N 2.411(4) and 2.459(4) Å]. The bond angle S(3)-Hg(1)-S(4) of 147.46(5)° has the greatest derivation from ideal tetrahedral geometry. Intermolecular interaction between Hg(1) and two S atoms of two neighboring molecules, 3.9318(15) and 3.9640(18) Å, make the Hg(1) distort from a tetrahedron to a disordered octahedron. The attempts for preparation complexes of Tl(I), Pb(II), Bi(III), Cd(II) ions with 2,2′-diphenyl-4,4′-bithiazole ligand were not successful and also the attempts for preparation complexes of 4,4′,5,5′-tetraphenyl-2,2′-bithizole ligand with Cu(II), Ni(II), Co(II), Co(III), Mn(II), Mn(III), Fe(II), Fe(III), Cr(III), Zn(II), Tl(III), Pb(II), Hg(II), Cu(I), Pd(II) were not successful. This point can be regarded as the initial electron withdrawing of phenyl rings and also their spatial steric effects.  相似文献   

11.
Complexes of syn-thiophene-2-aldoxime (TDH) have been synthesised and characterized on the basis of elemental analysis, molecular weight, conductance, magnetic susceptibility and i. r. spectra. These are [Co(TDH)4Cl2], [Co(TD)2], [Ni(TDH)4Cl2], [Ni(TD)2(TDH)], [Cu(CH3COO)2(TDH)]2, [Cu(TD)(OH)]2 and AgNO3 · 2TDH. In these complexes the ligand (TDH) functions as monodentate (coordinating through nitrogen atom) or bidentate (coordinating through the nitrogen and sulphur atoms). The C? S stretching frequency (of the thiophene ring) at 718 cm?1 may be taken as the criteria for the denticity of this ligand. A shift to lower frequency is observed in the complex if the ligand acts as a bidentate. However, this band is not affected if the ligand acts as monodentate.  相似文献   

12.
Ni(II) di(pentyl)dithiocarbamates of composition [Ni(Pe2dtc)2], [NiX(Pe2dtc)(PPh3)] (X = Cl, Br, I, NCS), [Ni(NCS)(Pe2dtc)(PBut3)], [Ni(Pe2dtc)(PPh3)2]ClO4 and [Ni(Pe2dtc)(PPh3)2]PF6 (Pe2dtc = di(pentyl)dithio-carbamate, PPh3 = triphenylphosphine, PBut3 = tributylphosphine) have been synthesized. The complexes have been characterized by the usual methods. X-ray structure analyses confirmed the nature of [NiI(Pe2dtc)(PPh3)] and [Ni(Pe2dtc)(PPh3)2]ClO4 complexes.  相似文献   

13.
Ternary complexation involving the manganese(II) ion, 2,2’-bipyridine (bipy), and halide (chloride, bromide) or pseudohalide (thiocyanate) ions has been studied by precise titration calorimetry inN,N -dimethylformamide (DMF) at 298K. All the titration curves are explained well in terms of formation of mononuclear complexes of the type [MnXm(bipy)n](2-m) + (X = CI, Br or SCN), and the formation of [MnCl(bipy)]+, [MnCl2(bipy)], [MnCl(bipy)2]+ and [MnCl2(bipy)2] has been established in the chloride system, [MnBr(bipy)]+, [MnBr2(bipy)], [MnBr(bipy)2]+ in the bromide system, and [Mn(NCS)(bipy)]+, [Mn(NCS)2(bipy)], [Mn(NCS)3(bipy)]-, [Mn(NCS)(bipy)2]+, and [Mn(NCS)2(bipy)2] in the thiocyanate system. The data were analyzed on the basis of the thermodynamic parameters for the binary MnlIbipy and MnII-X (X = Cl, Br and SCN) systems, the latter being determined in previous work. The formation constants, reaction enthalpies, and entropies of the ternary complexes were extracted. The thermodynamic parameters thus obtained are discussed in comparison with those of the corresponding systems of other transition metal(II) ions.  相似文献   

14.
A novel, useful in situ synthesis for NHC nickel allyl halide complexes [Ni(NHC)(η3-allyl)(X)] starting from [Ni(CO)4], NHC and allyl halides is presented. The reaction of [Ni(CO)4] with (i) one equivalent of the corresponding NHC and (ii) with an excess of the corresponding allyl chloride at room temperature leads with elimination of carbon monoxide to complexes of the type [Ni(NHC)(η3-allyl)(X)]. This approach was used to synthesize the complexes [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 2 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 3 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 4 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Br)] ( 5 ), [Ni(Me2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 6 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 7 ). The complexes 1 to 7 were characterized using NMR and IR spectroscopy and elemental analysis, and the molecular structures are provided for 2 and 7 . The allyl nickel complexes 1 – 7 are stereochemically non-rigid in solution due to (i) NHC rotation about the nickel-carbon bond, (ii) allyl rotation about the Ni–η3-allyl axis and (iii) π–σ–π allyl isomerization processes. The allyl halide complexes can be methylated as was demonstrated by the methylation of a number of the complexes [Ni(NHC)(η3-allyl)(X)] with methylmagnesium chloride or methyllithium, which led to isolation of the complexes [Ni(Me2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 8 ), [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 9 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 10 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 11 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Me)] ( 12 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 13 ). These complexes were fully characterized including X-ray molecular structures for 10 and 11 .  相似文献   

15.
The syntheses and crystal structures of four new divalent transition metal complexes of the types [Cu2(dien)2(nic)](ClO4)3 · MeOH (nic = anion of nicotinic acid; dien = diethylenetriamine), 1; [Cu(dien)(nic)]2(nic)2, 2; [Cu(dien)(nic)]2(BF4)2 · 2MeOH, 3 and [Ni(dien)(nic)(H2O)]4(NO3)4 · 2MeOH, 4, are reported, which were prepared by the reactions of diethylenetriamine and nicotinic acid with Cu(ClO4)2 · 6H2O, Cu(OAc)2 · H2O, Cu(BF4)2 · 6H2O and Ni(NO3)2 · 6H2O in MeOH, respectively. These complexes were characterized by single-crystal X-ray diffraction method and elemental analyses. In the cation of complex 1, one nicotinate ligand bridges two Cu(II) metal centers through the pyridyl nitrogen atom and one of the carboxylate oxygen atoms. The cations of complexes 2 and 3 form the twelve-membered metallocycles, involving two Cu(II) ions that are bridged by two nicotinate ligands. The cation of complex 4 forms a tetranuclear cage with the four Ni(II) metal centers bridged by four nicotinate ligands and each Ni(II) metal center adopts the distorted octahedral geometry. Their thermal properties have been investigated by using differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA).  相似文献   

16.
Ni(II) mononuclear dithiocarbamate complexes with bidentate P,P ligands of composition [Ni(R2dtc)(P,P)]X {R?=?pentyl (pe), benzyl (bz); dtc?=?S2CN?; P,P?=?1,2-bis(diphenylphosphino)ethane (dppe), 1,4-bis(diphenylphosphino)butane (dppb), 1,1′-bis(diphenylphosphino) ferrocene (dppf); X?=?ClO4, Cl, Br, NCS} and binuclear complexes of composition [Ni2(μ-dpph)(R2dtc)2]X2 with a P,P-bridging ligand {P,P?=?1,6-bis(diphenylphosphino)hexane (dpph); X?=?Cl, Br, NCS} have been synthesized. The complexes have been characterized by elemental and thermal analysis, IR, electronic and 31P{1H}-NMR spectroscopy, magnetochemical and conductivity measurements. Single crystal X-ray analysis of [Ni(pe2dtc)(dppf)]ClO4 confirmed a distorted square planar coordination in the NiS2P2 chromophore. For selected samples, the catalysis of graphite oxidation was studied.  相似文献   

17.
Methanol‐ and temperature‐induced dissolution–recrystallization structural transformation (DRST) was observed among two novel CuII complexes. This is first time that the combination of X‐ray crystallography, mass spectrometry and density functional theory (DFT) theoretical calculations has been used to describe the fragmentation and recombination of a mononuclear CuII complex at 60 °C in methanol to obtain a binuclear copper(II) complex. Combining time‐dependent high‐resolution electrospray mass spectrometry, we propose a possible mechanism for the conversion of bis(8‐methoxyquinoline‐κ2N,O)bis(thiocyanato‐κN)copper(II), [Cu(NCS)2(C10H9NO)2], Cu1 , to di‐μ‐methanolato‐κ4O:O‐bis[(8‐methoxyquinoline‐κ2N,O)(thiocyanato‐κN)copper(II)], [Cu2(CH3O)2(NCS)2(C10H9NO)2], Cu2 , viz. [Cu(SCN)2( L )2] ( Cu1 ) → [Cu( L )2] → [Cu( L )]/ L → [Cu2(CH3O)2(NCS)2( L )2] ( Cu2 ). We screened the antitumour activities of L (8‐methoxyquinoline), Cu1 and Cu2 and found that the antiproliferative effect of Cu2 on some tumour cells was much greater than that of L and Cu1 .  相似文献   

18.
Three Ni(II) complexes of cresol-based Schiff-base ligands, namely [Ni2(L1)(NCS)3(H2O)2], (1) [Ni2(L2)(CH3COO)(NCS)2(H2O)] (2) and [Ni2(L3)(NCS)3] (3), (where L1 = 2,6-bis(N-ethylpyrrolidineiminomethyl)-4-methylphenolato, L2 = 2,6-bis(N-ethylpiperidineiminomethyl)-4-methylphenolato and L3 = 2,6-bis{N-ethyl-N-(3-hydroxypropyl iminomethyl)}-4-methylphenolato), have been synthesized and structurally characterized by X-ray single-crystal diffraction in addition to routine physicochemical techniques. Density functional theory calculations have been performed to understand the nature of the electronic spectra of the complexes. Complexes 1?C3 when reacted with 4-nitrophenyl phosphate in 50:50 acetonitrile?Cwater medium promote the cleavage of the O?CP bond to form p-nitrophenol and smoothly convert 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) either in MeOH or in MeCN medium. Phosphatase- and catecholase-like activities were monitored by UV?Cvis spectrophotometry and the Michaelis?CMenten equation was applied to rationalize all the kinetic parameters. Upon treatment with urea, complexes 1 and 2 give rise to [Ni2(L1)(NCS)2(NCO)(H2O)2] (1??) and [Ni2(L2)(CH3COO)(NCO)(NCS)(H2O)] (2??) derivatives, respectively, whereas 3 remains unaltered under same reaction conditions.  相似文献   

19.
Two thiocyanato-Cu(II) complexes including mononuclear dithiocyanato Cu(Me3dpt)(NCS)2 (1) and the polymeric 1D [Cu(d,l-Ala)(μN,S–NCS)(H2O)] n (2) were synthesized and structurally characterized (Me3dpt = bis(N-methyl-3-propyl)methylamine, Ala = alaninate anion). The IR spectrum of complex 1 confirmed the N-bonding coordination mode of the thiocyanate groups, and its visible spectrum revealed the square pyramidal geometry around the central Cu2+ ion. Single X-ray crystallography of 1 showed that the Cu(II) center displays square pyramidal geometry with severe distortion toward trigonal bipyramidal environment. Complex 2 forms a 1-D polymeric chain with the NCS acting as a μN,S-ligand. A distorted SP geometry around the Cu2+ centers was achieved by the O and N atoms of alaninato anion, the aqua ligand and by the N and S atoms of the bridging thiocyanate groups. Hydrogen bonds of the type N–H···O, N–H···S and O–H···O are formed in this complex leading to the extension of the 1D chain to a supramolecular network.  相似文献   

20.
Pseudohalide complexes of copper(II) with aliphatic bidentate amines, [Cu(N3)2(N,N-diEten)]2 1, [Cu(NCO)2(N,N-diEten)]2 2, [Cu(NCO)2(N,N-diMeen)]2 3, [Cu(N3)(NCS)(N,N'-diMeen)]2 4 and [Cu(N3)(NCO)(N,N-diMeen)]2 5 (N,N-diEten=N,N-diethylethylenediamine; N,N-diMeen=N,N- dimethyl-ethylenediamine and N,N'-diMeen = N,N'-dimethylethylenediamine), were prepared, characterized and their thermal behavior was investigated by TG curves. According to thermal analysis and X-ray diffraction patterns all compounds decomposed giving copper(II) oxide as final product. The mechanisms of decomposition were proposed and an order of thermal stability was established.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号