首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The following palladium(II) and platinum(ll) complexes of rhodanine (HRd) and 3-methylrhodanine (MRd) have been prepared: Pd(HRd)1.5Cl2, Pd(HRd)2Br2, Pd(HRd)2Br2 · 0.25 EtOH, M(MRd)2X2 [M = Pd, X = Cl (0.25 EtOH) or Br; M = Pt, X = Cl or Br], Pd(MRd)3Br2, and M(MRd)4(ClO4)2 (M = Pd or Pt). The ligands are coordinated to the metal through the thiocarbonylic sulphur atom. Pd(HRd)1.5Cl2 has presumably a structure such as (X = Cl or Br) complexes have a trans-planar coordination. Pd(MRd)2X2 (X = Cl or Br) complexes arecis-planar coordinated. Pd(MRd)3Br2 has presumably a square coordination with two MRd molecules and two CI ionscis-coordinated in the equatorial plane, and a MRd molecule and a Cl ion weakly bonded in apical position. The M(MRd)4(ClO4)2 complexes have square planar coordination.Author to whom all correspondence should be addressed.  相似文献   

2.
Synthesis procedures are described for the new stable mixed ligand complexes, [Pd(Hpa)(pa)]Cl, [Pd(pa)(H2O)2]Cl, [Pd(pa)(en)]Cl, [Pd(pa)(bpy)]Cl, [Pd(pa)(phen)Cl], [Pd(pa)(pyq)Cl], cis-[MoO2(pa)2], [Ag(pa)(bpy)], [Ag(pa)(pyq)], trans-[UO2(pa)(pyq)](BPh4) and [ReO(PPh3)(pa)2]Cl (Hpa = 2-piperidine-carboxylic acid, en = ethylene diamine, bpy = 2,2′-bipyridyl, phen = 1,10-phenanthroline, pyq = 2(2′-pyridyl)quinoxaline). Their elemental analyses, conductance, thermal measurements, Raman, IR, electronic, 1H-n.m.r. and mass spectra have been measured and discussed. 2-Piperidine-carboxylic acid and its palladium complexes have been tested as growth inhibitors against Ehrlich ascites tumour cells (EAC) in Swiss albino mice.  相似文献   

3.
《Polyhedron》1986,5(6):1213-1216
The square planar complexes cis-[MCl2(hypy)], cis-[MCl2(hyqu)], [Pt(hypy)2] [PtCl4], [Pd(hypy)2][ClO4]2 and [Pd(hyqu)2][ClO4]2 (M = Pd or Pt, hypy = 2-hydrazinopyridine, hyqu = 8-hydrazinoquinoline), in which hypy and hyqu act as bidentate chelating ligands, have been prepared and characterized. Complexes containing hyqu do not appear to have been isolated previously.  相似文献   

4.
By reacting [Pd( )(μ-Cl)]2 with AgClO4 in NCMe, the corresponding cationic complexes [Pd( )(NCMe)2]ClO4 ( = phenylazophenyl-C2,N1; dimethylbenzylamine-C2,N; 8-methylquinoline-C8,N) can be obtained. Solutions containing the cations [Pd( )(S)2]+ are obtained when the reaction is carried out in tetrahydrofuran or acetone (S). The treatment of these solutions with bidentate ligands (L—L) (Ph2PCH2PPh2,Ph2PNHPPh2 or Ph2PCH2PPh2CHC(O)Ph) gives the mononuclear [Pd( )(L3l)]ClO4 complexes, with L3l acting as a chelate ligand. On the other hand [Pd( (μ-Cl)]2 reacts with L3l (Ph2PCH2PPh2, Ph2PNHPPh2) yielding [Pd( )Cl(L3l)] with L3l acting as monodentate. The reactions between [Pd( )(NCMe)2]ClO4 and 2,2′-bipyrimidyl give rise to the formation of the mononuclear [Pd( ) (bipym)]ClO4 or binuclear [Pd2( )2(μ-bipym)](ClO4)2, [( )Pd(μ-bipym)Pd( )](ClO4)2 derivatives. Finally [Pd( )Cldppm] (dppm = Ph2PCH2PPh2) react with NaH producing the neutral complexes [Pd( )(ddppm)] (ddppm = Ph2PCHPPh2) which by reaction with HCl lead again to the starting materials [Pd( )Cl(dppm)].  相似文献   

5.
The precursor nature effect on the state of the Pd–P surface layer in palladium catalysts and on their properties in the liquid-phase hydrogenation of chloronitrobenzenes under mild conditions has been investigated. A general feature of the Pd–P-containing nanoparticles obtained from different precursors and white phosphorus at P/Pd = 0.3 (PdCl2 precursor) and 0.7 (Pd(acac)2 precursor) is that their surface contains palladium in phosphide form (BE(Pd3d 5/2) = 336.2 eV and BE(Р2р) = 128.9 eV) and Pd(0) clusters (BE(Pd3d5/2) = 335.7 eV). Factors having an effect on the chemoselectivity of the palladium catalysts in chloronitrobenzenes hydrogenation are considered, including the formation of small palladium clusters responsible for hydrogenation under mild conditions.  相似文献   

6.
Summary Complexes of formulae Ni(HRS)2X2 (X=Cl or Br), M(HRS)2Y2 (M=Ni or Pd; Y=NO2 or C1O4), Pd(HRS)X2 (X=Cl, Br or I), Pt(HRS)X2 (X=Cl or Br), Pt(HRS)2(ClO4)2 and M(RS)2 (M=Pd or Pt) where HRS and RS denote 1-methyl-4-mercaptopiperidine in the zwitterionic or in the thiolato form, respectively, have been prepared and characterized. In all the complexes the ligands are coordinated exclusively through sulphur. Polymeric structures consisting of square-planar geometry with sulphur-bridged metal atoms are proposed in each case.  相似文献   

7.

Single-crystal x-ray structure determinations have been recorded at 295 K for the dithiocarbamate metal compounds [Co(Et2dtc)3], [Co(nPr2dtc)3], [Pd(iPr2dtc)2] and [Pd(Et2dtc)2]. The stability constants(K) in EtOH of dialkyldithiocarbamate metal complexes [M(R2dtc)n] (M=Co, Ni, Pd. R=Me, Et, iPr, nPr. n=2, 3. dtc=dithiocarbamate) are determined by UV-vis data. The stability of the metal complexes increases in the order: Co<Ni<Pd. The effects of alkyl groups on the stability of [M(R2dtc)2] (M=Ni and Pd) increase in the order: Me<Et<nPr<iPr, and [Co(R2dtc)3] decrease in the order: Et>iPr>nPr>Me. The results obtained from this study confirm that the stability due to alkyl groups may be partly attributed to changes in the residual positive charge and also partly to steric hindrance of branched alkyl-groups. The comparison between the solid and solution states shows that the [M(R2dtc)2] (M=Pd, Ni) complexes have similar changes in M-S distance and stability with change in alkyl group. [M(iPr2dtc)2] has the shortest M-S distance and the highest stability in solution.  相似文献   

8.
New palladium(0) complexes with a variety of coordinated olefins [Pd(olefin)(PMePh2)2] (II) (olefin = styrene, ethyl methacrylate, methyl methacrylate, methyl acrylate, methacrylonitrile, and dimethyl maleate), were prepared by the reactions of [PdEt2(PMePh2)2] (I) with corresponding olefins in toluene. These complexes were characterized by means of elemental analysis, IR and 1H NMR spectroscopy and the chemical reactions. The dissociation of the coordinated olefin from complex II in solution was confirmed by spectroscopic studies of [Pd(mma)(PMePh2)2] (mma = methyl methacrylate). From the variable temperature NMR study, kinetic parameters for the dissociation process were determined as Ea = 7 kcal/mol, and ΔS3 (293 K) = -30 cal/deg · mol. Some new hydrido complexes, [Pd(H)ClL2] (IV) (L = PMePh2, PEtPh2 and PEt2Ph), were prepared by the reactions of [Pd(olefin)L2] with dry HCl.  相似文献   

9.
A new radical cation salt based on the dithiolate complex Pd(dddt)2 (dddt=5,6-dihydro-1,4-dithiine-2,3-dithiolate) with the tetrahedral anion [GaBr4]? was synthesized. The crystal and molecular structure was determined by XRD analysis. The crystal structure of the salt contains Pd(dddt)2 cation layers alternating with layers of [GaBr4]? anions along thec axis of the unit cell. The cation layers contain stacks of Pd(dddt)2, with a Pd...Pd distance of 3.011 Å. The electroconductivity of [Pd(dddt)2]2GaBr4, single crystals at room temperature is 0.25 Ohm?1 cm?1 and decreases with temperature decrease, the activation energy beingE a=0.66 eV.  相似文献   

10.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ([P] when coordinated to a metal atom), was used to stabilize complexes of platinum(II) and palladium(II) with chelating dichalcogenolato ligands as [P]M(E∩E) [E = S, ∩ = CH2CH2, M = Pt ( 3a ); E = S, ∩ = 1, 2‐C6H4, M = Pt ( 5a ), Pd ( 6a ); E = S, ∩ = C(O)C(O), M = Pt ( 7a ), Pd ( 8a ); E = S, Se, ∩ = 1, 2‐C2(B10H10), M = Pt ( 9a, 9b ), Pd ( 10a, 10b ); E = S, ∩ = Fe2(CO)6, M = Pt ( 11a ), Pd ( 12a )]. Starting materials in all reactions were [P]MCl2 with M = Pt ( 1 ) and Pd ( 2 ). Attempts at the synthesis of [P]M(ER)2 with non‐chelating chalcogenolato ligands were not successful. All new complexes were characterized by multinuclear magnetic resonance spectroscopy in solution (1H, 13C, 31P, 77Se and 195Pt NMR), and the molecular structures of 5a and 12a were determined by X‐ray analysis. Both in the solid state and in solution the ligand [P] is linked to the metal atom by the P‐M bond and by η2‐C=C coordination of the central C=C bond of one of the C7H7 rings. In solution, intramolecular exchange between coordinated and non‐coordinated C7H7 rings is observed, the exchange process being markedly faster in the case of M = Pd than for M = Pt.  相似文献   

11.
The electrical conductive molecular crystals (Me3NEt)[Pd(dmit) 2]2 and (NEt4)[Pd (dmit) 2]2 (dmit = 4,5-dimercapto-1,3-dithiole-2-thione) have been prepared, and their crystal structures and conductivity-temperature curves have been determined. The fact that the conductivity at room temperature of (Me3NEt)[Pd(dmit) 2]2 (σ = 58 Ω-1 cm-1) is much higher than that of (Net4)-[Pd(dmit)2]2 (σ = 2.2 Ω-1.cm-1) has been rationally explained by the results of energy band calculations. (MeNEt3)[Pd(dmit)2]2 belongs to monoclinic system, P21/m space group and (Net4)[Pd (dmit)2]2 belongs to triclinic system, $P\bar 1$ space group. The structural conducting component of the crystals is the planar coordinative anion [Pd(dmit)2]0.5- which forms the face-to-face dimmer. [Pd(dmit)2]- 2These dimers have been further constructed to be a kind of two-dimensional (2-D) conductive molecular sheet by means of S_S intermolecular interactions. The tiny difference of the above 2-D molecular sheets of the two title crystals has resulted in one order of magnitude difference of conductivities.  相似文献   

12.
A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh3), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)2, the palladium(II) thiosaccharinate, Pd(tsac)2 (tsac: thiosaccharinate anion) ( 1 ) was prepared. The reaction of 1 with PPh3, dppm, and dppe leads to the mononuclear species Pd(tsac)2(PPh3)2 · MeCN ( 2 ), [Pd(tsac)2(dppm)] ( 3 ), Pd(tsac)2(dppm)2 ( 4 ), and [Pd(tsac)2(dppe)] · MeCN ( 5 ). Compounds 2 , 4 , and 5 have been prepared also by the reaction of Pd(acac)2 with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3 , and 5 have been studied by X‐ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P21/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) Å, β = 91.284(1)°, and Z = 8 molecules per unit cell, and complex 5 in P21/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) Å, β = 107.996(7)°, and Z = 4. In compounds 3 and 5 , the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the PdII atom. The molecular structure of complex 3 is the first reported for a mononuclear PdII‐dppm‐thionate system.  相似文献   

13.
Styrene oligomerization in the presence of Pd(acac)2+PPh3+BF3OEt2 catalytic system (acac—acetylacetonate) has been studied. Styrene conversion at optimum conditons (T=343 K, B/Pd=7, P/Pd=2) was as high as 75,000 mol of C3H3 per mol of Pd in 7 h with a selectivity to dimers, mostly 1,3-diphenylbut-1-ene, up to 93%.  相似文献   

14.
Reactions of (RC5H4)2Cr2(SCMe3)2S(I, R = H; II, R = Me) with (PPh3)2PdCl2 in benzene at 20°C gives trinuclear complexes (RC5H4)2Cr2Cl23-S)(μ-SCMe3)2Pd(PPh3)(III, R = H; IV, R = Me). The structure of IV as a monobenzene solvate is established by an X-ray analysis (black-green triclinic crystals space group P1 with a = 11.403(4), b = 14.933(5), c = 14.131(5) Å, α = 99.13(3), β = 112.72(3), γ = 95.65(3)°, V = 2201.6 Å, Z = 2; IV·C6H6). The structure was solved by direct methods and refined in an anisotropic approximation to R = 0.046, Rw = 0.058 for 7643 reflections with I ? 2σ(I). In the molecule of IV metal atoms are separated by non-bonding distances (Cr … Cr 4.079(I), Cr … Pd 3.230(I) and 3.380(I) Å) but linked by the bridging tridentate sulphur atom (CrS 2.339(2) and 2.329(2), PdS 2.327(2) Å), and two SCMe3 groups between Pd and Cr (CrS 2.396(2) and 2.403(2), PdS 2.350(2) and 2.381(2) Å, Cr?Pd 85.14(6) and 89.92(6)°). The Cl atoms are transferred from Pd to Cr atoms (CrCl 2.308(2) Å) and being terminally coordinated are in trans-positions to each other (as well as η-CH3C5H4 rings) with respect to the Cr2Pd plane. Cr atoms in III and IV exhibit ferromagnetic exchange interactions over the Cr?Cr system (+2J = 28 and 11 cm?1, respectively).  相似文献   

15.
Complexes [Pd(C6H3XH‐2‐R′‐5)Y(N^N)] (X=O, NH; Y=Br, I; R′=H, NO2; N^N=N,N,N′,N′‐tetramethylethylenediamine (tmeda), 2,2′‐bipyridine (bpy), 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (dtbbpy)) react with RN?C?E (E=NR, S) or RC≡N (R=alkyl, aryl, NR′′2) and TlOTf (OTf=CF3SO3) to give, respectively, 1) products of the insertion of the C?E group into the C? Pd bond, protonation of the N atom, and coordination of X to Pd, [Pd{κ2X,E‐(XC6H3{EC(NHR)}‐2‐R′‐4)}(N^N)]OTf or [Pd(κ2X,N‐{ZC6H3(NH?CR)‐2‐R′‐4})(N^N)]OTf, or products of the coordination of carbodiimides and OH addition, [Pd{κ2C,N‐(C6H4{OC(NR)}NHR‐2)}(bpy)]OTf; or 2) products of the insertion of the C≡N group to Pd and N‐protonation, [Pd(κ2X,N‐{XC6H3(NH?CR)‐2‐R′‐4})(N^N)]OTf.  相似文献   

16.
On prolonged heating in water Pd(bpyMe)Cl3 (bpyMe = N-methyl-2,2′-bipyridylium cation) cyclometallates to give monomeric Pd(bpyMe-H)Cl2, whereas the immediate products are a mixture of trans-[Pd(bpyMe)2Cl2]2+ and anionic palladium species. [Pd(bpyMe)2Cl2]2+ was synthesised directly from Na2PdCl4 and on heating gives Pd(bpyMe-H)Cl2 with the elimination of bpyMe and H+.  相似文献   

17.
Palladium-catalyzed reactions of aryl bromides with various olefins involving Pd(II)/diazabutadiene (DAB-R) systems have been investigated. The scope of a coupling process using Pd(II) sources and an α-diimine as ligand in the presence of Cs2CO3 as base was tested using various substrates. The Pd(OAc)2/DAB-Cy (1, DAB-Cy=1,4-dicyclohexyl-diazabutadiene) system presents the highest activity with respect to electron-neutral and electron-deficient aryl bromides in coupling with electron rich olefins. The synthesis and X-ray characterization of a Pd(II)-diazabutadiene ligand is reported. Extensive optimization experiments showed that another Pd(II) source, Pd(acac)2 (acac=acetylacetonate), proved to activate aryl bromides at high temperatures, low catalyst loadings when the appropriate concentration of nBu4NBr additive was employed. The effect of the DAB-Cy ligand is important at very low catalyst loadings and high temperatures. Pd(acac)2 and Pd(acac)2/DAB-Cy precatalysts were very effective for the arylation of various olefins with aryl bromides with respect to reaction rate, catalyst loadings, and functional group tolerance.  相似文献   

18.
Homo- and Heterodinuclear α-Pyridonate-bridged Platinum and Palladium Complexes with Bis(N-methylimidazol-2-yl)ketone (BMIK). Crystal Structures of [(BMIK)Pt(α-pyridonate)2Pt(BMIK)](NO3)2 · 4H2O, [(BMIK)Pd(α-pyridonate)2Pd(BMIK)](NO3)2 · 4H2O, and [(BMIK)Pd(α-pyridonate)2Pt/Pd(BMIK)](NO3)2 · 4H2O The isotypic dinuclear complexes [(BMIK)Pt(α-pyridonate)2Pt(BMIK)](NO3)2 · 4H2O ( 1 ) (P1 ; a = 12.197(5) Å, b = 12.505(5) Å, c = 12.866(5) Å, α = 88.17(3)°, β = 73.55(3)°, γ = 69.84(3)°; Z = 2) and [(BMIK)Pd(α-pyridonate)2Pd(BMIK)](NO3)2 · 4H2O ( 2 ) (a = 12.408(3) Å, b = 12.660(3) Å, c = 12.913(3) Å, α = 89.55(3)°, β = 74.59(2)°, γ = 68.68(2)°) were prepared by reaction of [Pt(BMIK)(H2O)2](NO3)2 or [Pd(BMIK)(H2O)2](NO3)2 with α-pyridone in aqueous solutions at 40°C and were isolated as red air-stable crystals (BMIK = bis(N-methylimidazol-2-yl)ketone). For the synthesis of mixed crystals of 2 with the heterometal complex [(BMIK)Pd(α-pyridonate)2Pt(BMIK)](NO3)2 · 4H2O ( 3 ) (a = 12.430(4) Å, b = 12.648(3) Å, c = 12.907(4) Å, α = 89.64(2)°, β = 74.57(2)°, γ = 68.65(2)°) α-pyridone was reacted with [Pd(BMIK)(H2O)2](NO3)2 in a molar ratio of 2 : 1 followed by addition of [Pt(BMIK)(H2O)2](NO3)2. The dinuclear cations consist of two M(BMIK) moieties (M = Pt, Pd) bridged by the N- and O-atoms of α-pyridonate, forcing the heterocyclic ring into head-head-orientation. Within the dinuclear cation, the two metal atoms are between 2.840 Å and 2.860 Å apart. The intermolecular distances are between 4.762 Å and 4.837 Å. The coordination geometry of both metal atoms is square-planar with the metal atoms being diplaced slightly from their respective coordination planes toward each other. 1H and 195Pt NMR spectra are reported for the complexes.  相似文献   

19.
Reductive condensation of Pd(OAc)2 in dioxane in the presence of CO and PR3 (R = Et, Bun) with addition of CF3COOH leads to the formation of decanuclear Pd103-CO)42-CO)8(PBun3)6 (I) and Pd10(CO)14(PBun3) (II) at Pd(OAc)2:PR3 molar ratios of 1:4–1:10 and 1:1.5–1:2.5, respectively. The use of CH3COOH instead of CF3COOH results in tetranuclear clusters Pd4(CO)5(PR3)4 (III) and Pd42-CO)6(PBun3) (IV). I ? III and III → IV transformations occur in organic media. The structures of I (space group P21/n, Z = λMo, 12125 independent reflections, R = 0.047) and IV (Pz:3, Z = λMo, 3254 reflections, R = 0.098) were established by X-Ray diffractions analysis. Cluster I is a 10-vertex Pd10 polyhedron, an octahedron with four unsymmetrically centered non-adjacent faces. The average PdPd distances in the octahedron are 2.825 Å, in the eight short Pdoct.Pdcap. bonds with the “equatorial” Pd atoms of the inner octahedron, bridged by the μ2-CO ligands, are 2.709 Å, and in the four elongated (without bridging CO groups) bonds with the apical Pd atoms of the octahedron are 3.300–3.422 Å. The PBun3 ligands are coordinated to the apical Pd atoms and the capping atoms (PdP 2.291–2.324 Å). Cluster IV is tetrahedral, with the CO ligands symmetrically bridged; PdPd 2.778–2.817; PdP 2.232–2.291; PdC 2.06 Å (average).  相似文献   

20.
Summary Two ditertiaryarsines,o-phenylenebis(diphenylarsine), (pdpa) ando-phenylenebis(di-p-tolylarsine), (pdta) yield some new complexes of palladium(II) and platinum(II). These are: square planar M(pdta)X2 · nCH2Cl2, [M = Pd, X = Cl, Br or NCS; M = Pt, X = Cl]; [Pt(A-A)2] X2 · nCH2Cl2, [(A-A) = pdta, X = Cl, NCS or ClO4; (A-A) = pdpa, X=ClO4] and [M2(A-A)2(NCS)2] (ClO4)2 · nCH2Cl2, [M = Pd, (A-A) = pdta; M = Pt, (A-A) = pdpa]; distorted octahedral M(pdta)2-X2nCH2Cl2, [M = Pd, X = I; M = Pt, X = Br or I] and [Pd(pdta)2(H2O)2](ClO4)2, and five coordinate [M(A-A)2X] ClO4 · nCH2Cl2, [M = Pd, Pt, (A-A) = pdta, X = I; M = Pt, (A-A) = pdpa, X = Br or I]. The [M2(A-A)2(NCS)2] (ClO4)2 · nCH2Cl2 complexes are novel in the sense that they contain bridging thiocyanate together with ionic perchlorate. The stereochemical assignments have been made on the basis of i.r. and u.v. spectra as well as conductance data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号