首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sound absorption of an industrial waste, developed during the processing of tea leaves has been investigated. Three different layers of tea-leaf-fibre waste materials with and without backing provided by a single layer of woven textile cloth were tested for their sound absorption properties. The experimental data indicate that a 1 cm thick tea-leaf-fibre waste material with backing, provides sound absorption which is almost equivalent to that provided by six layers of woven textile cloth. Twenty millimeters thick layers of rigidly backed tea-leaf-fibres and non-woven fibre materials exhibit almost equivalent sound absorption in the frequency range between 500 and 3200 Hz.  相似文献   

2.
Micro-perforated sound absorbers with sub-millimeter size holes can provide high absorption coefficients. This paper presents results of work on the development of an effective single layer micro-perforated sound absorber from the commercial composite material Parabeam® with micro diameter holes drilled on one side. Parabeam® is used as a structural material made from a fabric woven out of a E-glass yarn and consists of two decklayers bonded together by vertical piles in a sandwich structure with piles (thick fibers) woven into the decklayers. The paper includes, the analytical model developed for prediction of absorption coefficients, finite element solution using commercial software MSC.ACTRAN and experimental results obtained from impedance tube measurements. A simple optimization is performed based on the developed models to obtain an efficient absorber configuration. It has been anticipated that several different and interesting applications can be deduced by combining structural and sound absorption properties of this new micro-perforated absorber.  相似文献   

3.
In order to determine the relationship between the treatment duration of atmospheric pressure plasma jet (APPJ) and the penetration depth of the surface modification into textile structures, a four-layer stack of polyester woven fabrics was exposed to helium/oxygen APPJ for different treatment durations. The water-absorption time for the top and the bottom sides of each fabric layer was reduced from 200 s to almost 0 s. The capillary flow height for all fabric layers in the stack increased linearly with the treatment duration but the rate of increasing reduced linearly with the fabric layer number. A model for the capillary flow height as a function of treatment duration and the layer number was established based on the experimental data and the maximum penetration depth of the APPJ was predicted for the polyester fabric. The improved wettability of the fabrics was attributed to the enhanced surface roughness due to plasma etching and the surface chemical composition change due to plasma-induced chemical reaction as detected by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The surface roughness and the surface chemical composition change diminished as the fabric layer number increased.  相似文献   

4.
Having adopted several sets of new technology and techniques, such as cube-corner prism of higher refractive index, orthogonal holographic grating, non-linear compensation, and fringe fractionization, etc., we have developed a new type of laser angle sensor that can be used to measure two-dimensional angle of moving target. The sensor has high sensitivity, high precision and longer measuring range compared with the original sensor, and its measuring range will achieve ±35°, while its minimum resolution angle is 0.004°. The experimental results show that the measuring error is not greater than ±0.01°. In this paper, several design parameters and measuring results for 2D laser angle sensor are given.  相似文献   

5.
The absorption spectrum of H2S has been recorded by intracavity laser absorption spectroscopy in the spectral region 16 180–16 440 cm−1 corresponding to an excitation of the (70±, 0) local mode pair. Seventy-seven sublevels could be rotationally assigned and fitted with a rms of 0.009 cm−1 by considering the (70±, 0) local mode pair as isolated. The corresponding vibrational terms combined with all the levels reported in the literature were used to refine the effective vibrational Hamiltonian parameters of H232S. The importance of the Fermi-type interaction is discussed.  相似文献   

6.
Pipes with porous (permeable) walls have received the attention of several authors as a noise control element in automotive intake systems; however, a closed theory of sound transmission including the effect of the coupling of the internal and external acoustic fields and the presence of mean flow does not appear to be available. The present paper proposes an integro-differential system for the propagation of plane sound waves in pipes with porous walls, and presents its general numerical solution, as well as an approximate analytical solution. The predicted effect of the coupling between the internal and external acoustic fields in a circular pipe made of reinforced woven fabric walls is shown, and the transmission loss predictions are compared with the existing experimental data in the literature.  相似文献   

7.
The wurtzite phase of ZnS nanocrystal has been prepared by annealing in 200–600 °C temperature range, its cubic phase of 2–3 nm size, prepared through soft chemical method. Results of isochronal experiments of 2 h at different temperatures indicate that visible transformation to wurtzite from cubic ZnS appears at a temperature of 400 °C, which is about three times smaller than that of bulk ZnS phase transition temperature. The phases, nanostructures, and optical absorption characteristics are obtained through X-ray diffraction, transmission electron microscopy, and UV–visible absorption spectroscopy. A stable and green photoluminescence emission peaked at 518 nm is observed from the 600 °C annealed samples, under ultraviolet light excitation.  相似文献   

8.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

9.
Mechanical and electrical properties of silver stabilizer layer of coated conductor, which was prepared using nano silver paste as starting materials, have been investigated. Nano silver paste was coated on YBCO (Y1Ba2Cu3O7−δ) film by a dip coating method with a speed of 25 mm/min. Coated film was dried in air and heat treated at 400–700 °C in a flowing oxygen atmosphere. Adhesion strength between YBCO and silver layer was measured by Tape test (ASTM D 3359). The hardness and electrical conductivity of the sample were measured by pencil hardness test (ASTM D 3363). Surface and volume resistance were measured by using LORESTA-GP (MITSUBISHI). The sample heat treated at 500 °C showed poor adhesiveness of 1B but it is clearly enhanced to 5B when samples were heat treated at higher than 600 °C. The silver layer heat treated at 700 °C showed a high hardness value of higher than 9H and a volume resistance of 1.417 × 10−7 Ω mm at room temperature. SEM observations showed that a dense silver layer was formed with a thickness of about 2 μm. Dip coated silver layer prepared by using nano silver paste showed superior electrical and mechanical characteristics which is comparable to those that sputter deposited Ag layer.  相似文献   

10.
Excitation functions of α-scattering on 7Li leading to the ground and first excited states have been measured in the bombarding energy regions 8.6–12.5 MeV and 17.0–22.5 MeV at c.m. scattering angles of 54.2°, 72.4° and 89.8°. A systematic deviation from smooth behaviour is revealed which, because of its regularity, is attributed to the exchange of a triton cluster between two α-particles.  相似文献   

11.
H.K. Kim 《Applied Acoustics》2010,71(7):607-615
The influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete is systematically investigated in the present study. Three levels of cement flow (80%, 110%, and 140%) and five types of aggregates (normal aggregates of 8-13 mm and 13-19 mm and lightweight aggregates of 4-8 mm, 8-12 mm, and 12-19 mm) are used, and effects of the application of AE admixtures in paste were also studied. Single-layered and double-layered porous concrete specimens are fabricated to examine the effect of different layer configuration on the acoustic characteristics. For the purpose of comparison, the void ratio, compressive strength, and sound absorption coefficient of the specimens are used as evaluation parameters. Based on the findings of the study, a sound absorbing porous concrete with a maximum absorption coefficient of approximately 1.00 is developed, and the minimum absorption coefficient of the ‘double-layered porous concrete’ structure is shown to be more than 0.60 with a frequency of 400 Hz or above, considering the tolerant error.  相似文献   

12.
In this study, surveys were conducted at four typical Han Chinese Buddhist temples. These surveys were then analyzed to identify the subjective and objective factors of soundscape evaluation. Field measurements of the four temples’ sound levels were taken over the course of an entire day, and the representative sounds in temples were recorded. Soundscape evaluation questionnaire surveys were distributed at the temples. The analytical results of the questionnaire and measurement data showed that the sound preferences in temples are significantly correlated with sharpness value of the sounds in terms of psychoacoustic parameters, and the average sound levels at the four temples over the course of an entire day were between 47.0 and 52.7 dBA, and approximately 70% of those surveyed tended to evaluate the temples’ soundscapes as comfortable and harmonious. Regarding the objective factors, there was a significant correlation between the measured sound levels and the soundscape evaluations. When the sound level of a temple was higher than 60 dBA, respondents were more likely to feel uncomfortable, and the correlation between the sound level and the evaluation of acoustic comfort substantially increased. Regarding the subjective factors, the respondent’s age, occupation, religious belief, purpose, frequency of visiting the temples, and educational level significantly correlated with the soundscape evaluation with correlation coefficients ranging from 0.13 to 0.35.  相似文献   

13.
The atomic and electronic properties of the adsorption of furan (C4H4O) molecule on the Si(1 0 0)-(2 × 2) surface have been studied using ab initio calculations based on pseudopotential and density functional theory. We have considered two possible chemisorption mechanisms: (i) [4 + 2] and (ii) [2 + 2] cycloaddition reactions. We have found that the [4 + 2] interaction mechanism was energetically more favorable than the [2 + 2] mechanism, by about 0.2 eV/molecule. The average angle between the CC double bond and Si(1 0 0) surface normal was found to be 22°, which is somewhat smaller than the experimental value of 28°, but somewhat bigger than other theoretical value of 19°. The electronic band structure, chemical bonds, and theoretical scanning tunneling microscopy images have also been calculated. We have determined a total of six surface states (one unoccupied and five occupied) in the fundamental band gap. Our results are seen to be in good agreement with the recent near edge X-ray absorption fine structure and high resolution photoemission spectroscopy data.  相似文献   

14.
Dielectric constant of textile fibres plays very important role in electrostatic behavior of textile materials during its processing and use. The effective dielectric constant of textile materials is defined as the ratio of capacitance of a parallel plate capacitor with the textile material to that of the capacitor without the textile material. This paper presents three models considering textile woven fabric as a mixture of air and fibre to relate dielectric constant of fibre material and the effective dielectric constant of fabric. The mathematical models have taken into account measured fabric parameters. Plain woven fabrics of high density polyethylene monofilament yarns were used to do the actual measurement and results of three models based on these fabrics are compared.  相似文献   

15.
The laser beam absorption lengths of CO2 and a high power diode laser (HPDL) radiation for concrete have been determined. By employing Beer–Lambert’s law the absorption lengths for concrete of CO2 and a HPDL radiation were 470±22 μm and 177±15 μm, respectively. Indeed, this was borne out somewhat from a cross-sectional analysis of the melt region produced by both lasers which showed melting occurred to a greater depth when the CO2 laser was used.  相似文献   

16.
Resistive screens, or perforated plates, are widely used upstream of porous materials. They can be used either for protection or decoration, or for acoustic properties enhancement. This study points out the role that a resistive layer can have upstream on a porous material. Based on numerical simulations, this work gives the guidelines for rational use of high resistive layers in order to maximize the normal sound absorption of porous multilayers. Two major results emerge: (i) the upstream resistive layer can control the sound absorption of the porous multilayer, while nullifying the acoustic properties of downstream layer and (ii) this upstream layer may be detrimental to sound absorption of porous multilayer. Experimental validation on a porous multilayer, controlled by a woven textile, supports these findings. The sound absorption of material with poor sound absorption performance can be enhanced with a conveniently designed resistive layer.  相似文献   

17.
Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.  相似文献   

18.
A novel measurement method of temperature based on the phenomena that the phase difference between principle polarization states in the optical retarder is function of temperature is described. The polarization state of optical beam is changed as it passes through the optical retarder, which depends on the temperature. The temperature of optical retarder is determined by comparison of the power difference between principal polarization states. We demonstrate successfully the temperature measurement by using a polarization maintaining fiber as the optical retarder. With a 100 mm length of the fiber optic retarder, the change rate of phase difference on temperature was 0.236 rad/°C and the measurement error was ±0.038°C over the temperature range of −2.6 – +3.4°C. With a 11.5 mm length of the fiber optic retarder, the change rate of phase difference on temperature was 0.021 rad/°C and the measurement error was ±0.79°C over the temperature range of −8.5 – +86.5°C.  相似文献   

19.
The local surface structures of in the ( √3 × √3) R30° and (5√3 × 2) phases have been investigated by means of polarization-dependent sulfur K-edge surface EXAFS. In the (√3 × √3 ) R30° phase, sulfur adatoms are found to occupy threefold hollow sites with a S---Ni distance of 2.13 Å and an inclination angle ω of the Sz.sbnd;Ni bonds at 44° from the surface plane. In contrast, in the (5√3 × 2) phase, it is determined that the Sz.sbnd;Ni bond is longer, 2.18 Å, more inclined, ω = 31°, and that the coordination number is not 3 but 4. These results strongly support a picture involving reconstruction of the top nickel layer to form a rectangular structure. Consideration of several models proposed for the (5√3 × 2) phase leads to one which is compatible with both the present results and results recently reported using STM.  相似文献   

20.
Snow is a sound absorbing porous sintered material composed of solid matrix of ice skeleton with air (+water vapour) saturated pores. Investigation of snow acoustic properties is useful to understand the interaction between snow structure and sound waves, which can be further used to devise non-destructive way for exploring physical (non-acoustic) properties of snow. The present paper discusses the experimental measurements of various acoustical properties of snow such as acoustic absorption coefficient, surface impedance and transmission losses across different snow samples, followed by inverse characterization of different geometrical parameters of snow. The snow samples were extracted from a natural snowpack and transported to a nearby controlled environmental facility at Patsio, located in the Great Himalayan range of India. An impedance tube system (ITS), working in the frequency range 63–6300 Hz, was used for acoustic measurements of these snow samples. The acoustic behaviour of snow was observed strongly dependent upon the incident acoustic frequency; for frequencies smaller than 1 kHz, the average acoustic absorption coefficient was found below than 0.4, however, for the frequencies more than 1 kHz it was found to be 0.85. The average acoustic transmission loss was observed from 1.45 dB cm−1 to 3.77 dB cm−1 for the entire frequency range. The real and imaginary components of normalized surface impedance of snow samples varied from 0.02 to 7.77 and −6.05 to 5.69, respectively. Further, the measured acoustic properties of snow were used for inverse characterization of non-acoustic geometrical parameters such as porosity, flow resistivity, tortuosity, viscous and thermal characteristic lengths using the equivalent fluid model proposed by Johnson, Champoux and Allard (JCA). Acoustically derived porosity and flow resistivity were also compared with experimentally measured values and good agreement was observed between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号