首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
通过热解自聚合多巴胺法制备了氮掺杂空心碳微球(N-HCMS), 并采用微波辅助乙二醇还原方法把Pt纳米粒子负载于N-HCMS上制得了Pt/N-HCMS催化剂. 催化剂的表面形貌、晶体结构及其比表面积和孔径分布等分别采用扫描电子显微镜、透射电子显微镜、X射线衍射仪及比表面分析仪等进行表征. 采用循环伏安法和线性扫描伏安法研究了Pt/N-HCMS 催化剂在酸性条件下的电催化氧还原性能. Pt/N-HCMS 催化剂由于Pt纳米粒子的均匀分散、N-HCMS载体的快速电子传递及其独特的微孔和中空结构而具有很高的电催化氧还原活性, 其质量比活性是E-TEK Pt/C 催化剂的近两倍. Pt/N-HCMS 催化剂还具有优良的稳定性. 本工作对于开发高性能的燃料电池阴极催化剂具有重要意义.  相似文献   

2.
以聚乙烯亚胺(PEI)改性的石墨烯(PEI-GNs)为载体,利用原位电化学还原法制备了功能化石墨烯载铂催化剂(Pt/PEI-GNs)。运用X射线光电子能谱、X射线粉末衍射、扫描电镜等对催化剂的组成、结构、形态进行表征,结果表明:实验成功制备了Pt/PEI-GNs催化剂,且PEI-GNs改善了Pt粒子的分散性和形貌。运用电化学方法考察了PEI-GNs对Pt纳米粒子电催化性能的影响,结果表明,相对于Pt催化剂,Pt/PEI-GNs催化剂表现出更高的催化活性和稳定性,这主要是由于Pt粒子在PEI-GNs载体上形成均匀分散的绣球状粒子及PEI-GNs良好的电子传递能力。  相似文献   

3.
何洪  戴洪兴  王家宁 《催化学报》2011,(8):1329-1335
采用简单的化学还原法制备了具有不同形貌特征的Pt纳米粒子,并利用浸渍法将其负载到SiO2上,得到了粒子分散均一的负载型Pt催化剂,考察了其催化CO氧化反应性能.X射线荧光分析、X射线光电子能谱、红外光谱和透射电镜结果表明,Pt/SiO2模型催化剂上CO氧化活性的不同来源于Pt纳米粒子不同晶面的贡献,即Pt纳米粒子的晶型...  相似文献   

4.
采用原位碳热还原法制备了硼掺杂的β-SiC(Bx SiC)光催化剂,并考察了其可见光下光催化分解水制氢的性能.利用X射线衍射仪、X射线光电子能谱、扫描电镜及紫外-可见吸收光谱等测试方法对所制备催化剂的晶型、形貌、表面性质及能带结构进行了表征.分析结果表明,硼原子掺杂进入SiC晶格并取代了Si位点,在价带上方形成了浅受主能级,从而导致了带隙宽变窄.浅受主能级作为空穴的捕获中心可抑制光生电子和空穴的复合.因此,与SiC相比,硼掺杂SiC光催化剂在可见光下催化分解水产氢的活性大大提高.当B/Si的摩尔比为0.05时,硼掺杂SiC表现出最高的光催化产氢活性.  相似文献   

5.
采用非晶态络合物法制备了La0.9Cu0.1MnO3和LaCoO3钙钛矿催化剂, 并利用固定化溶胶工艺合成了Pt纳米粒子负载的Pt/La0.9Cu0.1MnO3和Pt/LaCoO3复合催化剂. 通过透射电镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等手段对催化剂的微观结构、形貌及Pt的价态进行了研究; 考察了催化剂的CO催化氧化发光性能. 结果表明, 若La0.9Cu0.1MnO3催化剂表面上负载的Pt纳米颗粒形成团聚, 则在其CO催化氧化发光谱中出现发光峰分裂的现象, 而在Pt纳米颗粒分散较好的Pt/LaCoO3体系中却没有出现这一情况. 因此可以利用CO催化发光谱来初步判断贵金属纳米颗粒在载体表面的分散状态.  相似文献   

6.
采用原位碳热还原法制备了硼掺杂的β-SiC (BxSiC)光催化剂,并考察了其可见光下光催化分解水制氢的性能. 利用X射线衍射仪、X射线光电子能谱、扫描电镜及紫外-可见吸收光谱等测试方法对所制备催化剂的晶型、形貌、表面性质及能带结构进行了表征. 分析结果表明,硼原子掺杂进入SiC 晶格并取代了Si 位点,在价带上方形成了浅受主能级,从而导致了带隙宽变窄. 浅受主能级作为空穴的捕获中心可抑制光生电子和空穴的复合. 因此,与SiC相比,硼掺杂SiC光催化剂在可见光下催化分解水产氢的活性大大提高. 当B/Si 的摩尔比为0.05时,硼掺杂SiC表现出最高的光催化产氢活性.  相似文献   

7.
以氮掺杂碳纳米管(NCNT)为载体,利用掺杂氮原子的锚定作用,通过微波辅助乙二醇还原法方便地将Pt纳米粒子高分散地固载于NCNT表面,制得了Pt/NCNT系列催化剂,对催化剂制备规律、电催化甲醇氧化反应(MOR)性能及构效关系开展了系统深入的研究。结果表明,随Pt负载量在18.2%~58.7%(w/w,下同)范围增加,Pt纳米粒子的粒径在2.2~3.7 nm范围相应地逐渐增大。单位质量催化剂的MOR催化活性先增加后急剧减小,在负载量为47.8%时达到最大。Pt的质量比活性在中等负载量(27.6%~47.8%)区间出现高值平台。该变化规律源于Pt纳米粒子的MOR催化活性在3 nm前后的明显差异,即3 nm时活性差,3 nm时活性优异。高负载量(58.7%)时活性的急剧下降源于Pt纳米粒子因团聚引起的Pt利用率的降低。  相似文献   

8.
在本工作中,通过在氮气保护下热解Pt纳米颗粒结合的ZIF-67制备了由ZIF-67原位产生的氮掺杂碳负载Pt Co合金纳米颗粒组成的Pt Co-NC复合催化剂。通过X射线衍射,扫描电子显微镜,透射电子显微镜等物理表征手段研究了催化剂的结构和形貌,并测试了该催化剂对醇类燃料甲醇和乙醇氧化的电化学性能。与参比样Pt/C相比,Pt Co-NC催化剂的电催化活性与稳定性均得到了极大的提高,其优异的催化性能可以归因于抗一氧化碳中毒能力的提升和原位形成的Pt Co纳米颗粒和氮掺杂载体间的协同作用。  相似文献   

9.
以氮掺杂碳纳米管(NCNT)为载体,利用掺杂氮原子的锚定作用,通过微波辅助乙二醇还原法方便地将Pt纳米粒子高分散地固载于NCNT表面,制得了Pt/NCNT系列催化剂,对催化剂制备规律、电催化甲醇氧化反应(MOR)性能及构效关系开展了系统深入的研究。结果表明,随Pt负载量在18.2%~58.7%(w/w,下同)范围增加,Pt纳米粒子的粒径在2.2~3.7 nm范围相应地逐渐增大。单位质量催化剂的MOR催化活性先增加后急剧减小,在负载量为47.8%时达到最大。Pt的质量比活性在中等负载量(27.6%~47.8%)区间出现高值平台。该变化规律源于Pt纳米粒子的MOR催化活性在3 nm前后的明显差异,即<3 nm时活性差,>3 nm时活性优异。高负载量(58.7%)时活性的急剧下降源于Pt纳米粒子因团聚引起的Pt利用率的降低。  相似文献   

10.
通过双牺牲模板法合成了以一维管状Mn3O4-C为催化剂载体的新型Pt 基电催化剂. 催化剂的表面形貌、晶体结构及其组成分别采用透射电镜、X射线衍射仪、能量散射X射线光谱进行表征. 通过循环伏安法对Pt-Mn3O4-C复合物的电化学性能进行了测试. 结果表明平均粒径为1.8 nm的Pt 纳米颗粒均匀分散在管式Mn3O4-C载体上, 与商业的E-TEK Pt/C 催化剂(20% (w, 质量分数) Pt)相比, Pt-Mn3O4-C对甲醇氧化有更好的电催化活性和更高的稳定性. Pt 纳米粒子在Mn3O4-C上的均匀分散及Pt 和Mn3O4的协同催化效应使得Pt-Mn3O4-C具有优异的性能.  相似文献   

11.
A novel Pt/Au/C catalyst was prepared by depositing the Pt and Au nanoparticles on the carbon support. The synthesized catalysts were characterized by energy-dispersive X-ray (EDX) and transmission electron microscopy (TEM), and electrochemically analyzed for activity towards oxygen-reduction reaction and methanol oxidation reaction. EDX and TEM results reveal that Pt nanoparticles supported on carbon supports were separated by Au nanoparticles. The electrochemical analysis indicate that the novel catalyst showed the enhanced methanol tolerance while maintaining a high catalytic activity for the oxygen-reduction reaction, which could be attributed to the less methanol adsorption on Pt/Au/C catalyst.  相似文献   

12.
In this study, a novel silicon carbide/platinum/cadmium sulfide (SiC/Pt/CdS) Z-scheme heterojunction nanorod is constructed using a simple chemical reduction-assisted hydrothermal method, in which Pt nanoparticles are anchored at the interface of SiC nanorods and CdS nanoparticles to induce an electron-hole pair transfer along the Z-scheme transport path. Multiple characterization techniques are used to analyze the structure, morphology, and properties of these materials. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results show that the SiC/Pt/CdS materials with good crystal structure are successfully synthesized. Transmission electron microscopy reveals that Pt nanoparticles grow between the interfaces of SiC nanorods and CdS nanoparticles. UV-Vis diffuse reflectance spectroscopy shows that the as-prepared Z-scheme heterojunction samples have a wider light absorption range in comparison with pristine CdS materials. Photoluminescence spectroscopy and the transient photocurrent response further demonstrate that the SiC/Pt/CdS nanorod sample with an optimal molar ratio possesses the highest electron-hole pair separation efficiency. The loading amount of CdS on the surface of SiC/Pt nanorods is effectively adjusted by controlling the molar ratio of SiC and CdS to achieve the optimal performance of the SiC/Pt/CdS nanorod photocatalysts. The optimal H2 evolution capacity is achieved at SiC : CdS = 5 : 1 (molar ratio) and the maximum H2 evolution rate reaches a high value of 122.3 µmol·h−1. In addition, scanning electron microscopy, XRD, and XPS analyses show that the morphology and crystal structure of the SiC/Pt/CdS photocatalyst remain unchanged after three cycles of activity testing, indicating that the SiC/Pt/CdS nanocomposite has a stable structure for H2 evolution under visible light. To prove the Z-scheme transfer mechanism of electron-hole pairs, selective photo-deposition technology is used to simultaneously carry out the photo-reduction deposition of Au nanoparticles and photo-oxidation deposition of Mn3O4 nanoparticles in the photoreaction. The experimental results indicate that during photocatalysis, the electrons in the conduction band of CdS participate mainly in the reduction reaction, and the holes in the valence band of SiC are more likely to undergo the oxidation reaction. The electrons in the conduction band of SiC combine with the holes in the valence band of CdS to form a Z-scheme transport path. Therefore, a possible Z-scheme charge migration path in SiC/Pt/CdS nanorods during photocatalytic H2 production is proposed to explain the enhancement in the activity. This study provides a new strategy for synthesizing a Z-scheme photocatalytic system based on SiC nanorods. Based on the characterization results, it is determined that SiC/Pt/CdS nanocomposites are highly efficient, inexpensive, easy to prepare, and are stable structures for H2 evolution under visible light with outstanding commercial application prospects.  相似文献   

13.
任红艳 《分子催化》2015,29(2):173-178
通过水热法合成棒状纳米Ce O2(Ce O2-R),并将Pt纳米颗粒负载于Ce O2表面,制得甲醇燃料电池的阳极催化剂Pt/Ce O2-R.通过结构与形貌表征,结果表明,Pt/Ce O2-R中Ce O2的暴露晶面为(111)和(002)晶面,改变了Pt周围的电子结构,进而降低了Pt-COads的键能,释放出更多的活性位.另外,Pt纳米颗粒在Ce O2-R表面分散更均匀.利用电化学工作站测试阳极催化剂Pt/Ce O2-R在酸性溶液中的电化学性能,证明Pt/Ce O2-R催化剂的甲醇电氧化性能与抗CO毒害能力较颗粒状Ce O2负载Pt催化剂(Pt/Ce O2-P)都有很大的提高,证明Ce O2-R作为Pt纳米颗粒的载体用于直接甲醇燃料电池的阳极反应具有发展潜力.  相似文献   

14.
以天然石墨为原料,采用改进的Hummers法制备氧化石墨.然后采用简单的一步化学还原法在乙二醇(EG)中同时还原氧化石墨烯(GO)和H2PtCl6制备高分散的铂/还原态氧化石墨烯(Pt/RGO)催化剂.采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)和透射电子显微镜(TEM)对催化剂的微结构、组成和形貌进行表征.结果表明, GO已被还原成RGO, Pt纳米粒子均匀分散在RGO表面,粒径约为2.3 nm.采用循环伏安法和计时电流法评价催化剂对甲醇氧化的电催化性能,测试结果表明, Pt/RGO催化剂对甲醇氧化的电催化活性和稳定性与Pt/C和Pt/CNT相比有了很大提高.另外其对甲醇电催化氧化的循环伏安图中正扫峰电流密度(If)和反扫峰电流密度(Ib)的比值高达1.3,分别是Pt/C和Pt/CNT催化剂的2.2和1.9倍,表明Pt/RGO催化剂具有高的抗甲醇氧化中间体COad的中毒能力.  相似文献   

15.
以SiO2包覆的TiO2纳米管(TiNT@@SiO2)为载体,以H2PtCl6为前驱体,采用紫外光还原法制备了Pt纳米粒子填充的TiNT@@SiO2材料(Pt-TiNT@@SiO2).并采用透射电镜、场发射扫描电镜、电子能谱和X射线衍射等手段对材料样品进行了表征,考察了制备时紫外光照时间和强度以及Pt填充量对其形貌的影...  相似文献   

16.
SiC-supported Pt nanocatalyst was prepared by electrodeposition of Pt nanoparticles on the surface of high-surface-area SiC, which was fabricated by a versatile carbothermal reduction method. Characterization studies show that such synthesis protocol leads to well distribution of Pt nanoparticles, with a mean particle size of 2.9 nm on the support. This catalyst has been electrochemically characterized toward methanol oxidation, which exhibits higher catalytic activity, durability, and electrochemical active surface area than the electrodeposited Pt on multiwalled carbon nanotubes (MWCNTs). Further investigation reveals that the SiC-supported Pt also shows superior CO tolerance to Pt/MWCNTs. These results suggest that high-surface-area SiC could be a promising supporting material for constructing high-performance methanol oxidation electrocatalysts.  相似文献   

17.
Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.  相似文献   

18.
A new type of carbon-free electrode catalyst, Pt/mesoporous WO3 composite, has been prepared and its electrochemical activity for methanol oxidation has been investigated. The mesoporous tungsten trioxide support was synthesized by a replicating route and the mesoporous composties with Pt loaded were characterized by using X-ray diffraction (XRD), nitrogen sorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) techniques. Cyclic voltammetry (CV), line scan voltammetry (LSV) and chronoamperometry (CA) were adopted to characterize the electrochemical activities of the composites. The mesoporous WO3 showed high surface area, ordered pore structure, and nanosized wall thickness of about 6-7 nm. When a certain amount of Pt nanoparticles were dispersed in the pore structure of mesoporous WO3, the resultant mesostructured Pt/WO3 composites exhibit high electro-catalytic activity toward methanol oxidation. The overall electro-catalytic activities of 20 wt % Pt/WO3 composites are significantly higher than that of commercial 20 wt % Pt/C catalyst and are comparable to the 20 wt % PtRu/C catalyst in the potential region of 0.5-0.7 V. The enhanced electro-catalytic activity is attributed to be resulted from the assistant catalytic effect and the mesoporous structure of WO3 supports.  相似文献   

19.
In this project, Pt/NiO?GO nanocatalyst is grown on nickel foam (NF) and, its catalytic activity towards electrochemical oxidation of methanol in acidic media is studied. The first step is devoted to the synthesis of NiO?GO support by a hydrothermal method. Then Pt nanoparticles (~34.3 nm) are electrodeposited on this supporting material. Hydrothermal and electrochemical deposition conditions are optimized. Surface of modified NF was inspected for physical characterization and Chemical composition by some techniques such as field emission scanning electron microscopy (FESEM), energy‐dispersive X‐ray spectra (EDS), and X‐ray diffraction (XRD). In the electrochemical section, the catalytic performance of Pt/NiO?GO/NF towards methanol oxidation is investigated by cyclic voltammetry and chronoamperometry measurements. The electrochemical impedance spectroscopy (EIS) is elected to deliberate charge transfer resistance on the catalyst surface. Mass activity, electrochemical surface area (ECSA) and durability of prepared catalysts are compared with commercial Pt/C. Deliberations prove the superiority of Pt/NiO?GO/NF towards methanol oxidation in acidic media. The Superior quality of synthesized nanocatalyst that is attributed to the synergetic effect of the NiO?GO support material and Pt nanoparticles, indicate that Pt/NiO?GO/NF can be successfully used as the anode in the direct methanol fuel cell (DMFC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号