首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Fast self sustained waves (autowaves) associated with chemical or phase transformations are observed in many situations in condensed matter. They are governed neither by diffusion of matter or heat (as in combustion processes) nor by a travelling shock wave (as in gaseous detonation). Instead, they result from a coupling between phase transformation and the stress field, and may be classified as gasless detonation autowaves in solids. We propose a simple model to describe these regimes. The model rests on the classical equations of elastic deformations in a 1-dimensional solid bar, with the extra assumption that the phase (chemical) transformation induces a change of the sound velocity. The transformations are assumed to occur through a chain branched mechanism, which starts when the mechanical stress exceeds a given threshold. Our investigation shows that supersonic autowaves exist in this model. In the absence of diffusion (dissipation factor, losses), a continuum of travelling wave solutions is found. In the presence of diffusion, a steady state supersonic wave solution is found, along with a slower wave controlled by diffusion. Received 15 October 1998  相似文献   

2.
A kinetics built upon q-calculus, the calculus of discrete dilatations, is shown to describe diffusion on a hierarchical lattice. The only observable on this ultrametric space is the “quasi-position” whose eigenvalues are the levels of the hierarchy, corresponding to the volume of phase space available to the system at any given time. Motion along the lattice of quasi-positions is irreversible. Received: 24 June 1997 / Revised: 15 September 1997 / Accepted: 6 October 1997  相似文献   

3.
Jaynesian statistical inference is used to predict that steady, non-uniform Couette flow in a simple liquid will generate a heat flux proportional to the gradient of the square of the strain-rate when the temperature gradient is negligible. The heat flux is divided into phonon and self-diffusion components, with the latter coupling to the elastic strain and inelastic strain-rate. Operators for all these are substituted into the information-theoretic phase-space distribution. By taking moments of an exact equation for this distribution derived by Robertson, one obtains an evolution equation for the self-diffusion component of the heat flux which, in a steady state, predicts shear-driven heat flow. Received 10 September 1998  相似文献   

4.
Anomalous scaling in the Zhang model   总被引:2,自引:0,他引:2  
We apply the moment analysis technique to analyze large scale simulations of the Zhang sandpile model. We find that this model shows different scaling behavior depending on the update mechanism used. With the standard parallel updating, the Zhang model violates the finite-size scaling hypothesis, and it also appears to be incompatible with the more general multifractal scaling form. This makes impossible its affiliation to any one of the known universality classes of sandpile models. With sequential updating, it shows scaling for the size and area distribution. The introduction of stochasticity into the toppling rules of the parallel Zhang model leads to a scaling behavior compatible with the Manna universality class. Received 8 August 2000 and Received in final form 4 October 2000  相似文献   

5.
Fast self sustained waves of chemical or phase transformations, observed in several contexts in condensed matter effectively result in “gasless detonation". The phenomenon is modelled by coupling the reaction diffusion equation, describing chemical or phase transformations, and the wave equation, describing elastic perturbations. The coupling considered in this work involves (i) a dependence of the sound velocity on the chemical (phase) field, and (ii) the destruction of the initial chemical equilibrium when the strain exceeds a critical value (strain induced phase transition). Both the case of an initially unstable state (first order kinetics) and metastable state (second order kinetics) are considered. An exhaustive analytic and numerical study of travelling waves reveals the existence of supersonic modes of transformations. The practically important problem of ignition of fast waves by mechanical perturbation is investigated. With the present model, the critical strain necessary to ignite gasless detonation by local perturbations is determined. Received 18 November 1999  相似文献   

6.
The renormalisation group approach is applied to the study of the short-time critical behaviour of the d-dimensional Ginzburg-Landau model with long-range interaction of the form in momentum space. Firstly the system is quenched from a high temperature to the critical temperature and then relaxes to equilibrium within the model A dynamics. The asymptotic scaling laws and the initial slip exponents and of the order parameter and the response function respectively, are calculated to the second order in . Received 9 June 2000 and Received in final form 2 August 2000  相似文献   

7.
Conductivity and permittivity of the organic transfer salt (TMTTF)2Br have been measured at low frequencies (102-107 Hz) between room temperature down to 4 K. The real part of the permittivity, , is shown to grow below the temperature at which the conductivity is maximum due to charge localization of Mott-Hubbard type. reaches a maximum of 105-106 at 35 K-50 K depending on the samples. Decreasing temperature below , sharply decreases down to helium temperature through the antiferromagnetic phase transition at T N = 15 K. We explain the magnitude, the temperature and frequency dependence of as resulting from short range charge density wave states in the temperature range where charge localization occurs. This interpretation is supported by recent X-ray scattering measurements. Received: 10 October 1997 / Revised: 28 February 1998 / Accepted: 3 March 1998  相似文献   

8.
The coarsening process in a class of driven systems is studied. These systems have previously been shown to exhibit phase separation and slow coarsening in one dimension. We consider generalizations of this class of models to higher dimensions. In particular we study a system of three types of particles that diffuse under local conserving dynamics in two dimensions. Arguments and numerical studies are presented indicating that the coarsening process in any number of dimensions is logarithmically slow in time. A key feature of this behavior is that the interfaces separating the various growing domains are macroscopically smooth (well approximated by a Fermi function). This implies that the coarsening mechanism in one dimension is readily extendible to higher dimensions. Received 3 April 2000  相似文献   

9.
We consider biological evolution as described within the Bak and Sneppen 1993 model. We exhibit, at the self-organized critical state, a power-law sensitivity to the initial conditions, calculate the associated exponent, and relate it to the recently introduced nonextensive thermostatistics. The scenario which here emerges without tuning strongly reminds of that of the tuned onset of chaos in say logistic-like one-dimensional maps. We also calculate the dynamical exponent z. Received: 5 November 1997 / Received in final form: 11 November 1997 / Accepted: 19 November 1997  相似文献   

10.
We study the behavior under perturbations of the Parallel Bak-Sneppen model (PBS) in 1+1 dimension, which has been shown to belong to the universality class of Directed Percolation (DP) in 1+1 dimensions [#!SD96!#]. We focus our attention on the damage-spreading features of the PBS model with both random and deterministic updating, which are studied and compared to the known results for the extremal Bak-Sneppen model (BS) and for DP. For both random and deterministic updating, we observe a power law growth of the Hamming distance. In addition, we compute analytically the asymptotic plateau reached by the distance after the growing phase. Received: 24 September 1998 / Revised: 17 November 1998 / Accepted: 19 November 1998  相似文献   

11.
We study the behavior under perturbations in the, recently introduced, Bak-Sneppen model with deterministic updating. We focus our attention on the damage-spreading features and show that the value of the growth exponent for the distance, , coincides with that of the random updating Bak-Sneppen model. Moreover, we generalize this analysis by considering a broader set of initial perturbations for which the value of is preserved. Received: 24 June 1998 / Accepted: 9 July 1998  相似文献   

12.
We report studies of the behaviour of a single driven domain wall in the 2-dimensional non-equilibrium zero temperature random-field Ising model, closely above the depinning threshold. It is found that even for very weak disorder, the domain wall moves through the system in percolative fashion. At depinning, the fraction of spins that are flipped by the proceeding avalanche vanishes with the same exponent as the infinite percolation cluster in percolation theory. With decreasing disorder strength, however, the size of the critical region decreases. Our numerical simulation data appear to reflect a crossover behaviour to an exponent at zero disorder strength. The conclusions of this paper strongly rely on analytical arguments. A scaling theory in terms of the disorder strength and the magnetic field is presented that gives the values of all critical exponent except for one, the value of which is estimated from scaling arguments. Received: 13 February 1998 / Accepted: 30 March 1998  相似文献   

13.
Finite-size effects in the self-organized critical forest-fire model   总被引:4,自引:0,他引:4  
We study finite-size effects in the self-organized critical forest-fire model by numerically evaluating the tree density and the fire size distribution. The results show that this model does not display the finite-size scaling seen in conventional critical systems. Rather, the system is composed of relatively homogeneous patches of different tree densities, leading to two qualitatively different types of fires: those that span an entire patch and those that do not. As the system size becomes smaller, the system contains less patches, and finally becomes homogeneous, with large density fluctuations in time. Received 24 April 1999 and Received in final form 26 October 1999  相似文献   

14.
A model for the evolution of the wealth distribution in an economically interacting population is introduced, in which a specified amount of assets are exchanged between two individuals when they interact. The resulting wealth distributions are determined for a variety of exchange rules. For “random” exchange, either individual is equally likely to gain in a trade, while “greedy” exchange, the richer individual gains. When the amount of asset traded is fixed, random exchange leads to a Gaussian wealth distribution, while greedy exchange gives a Fermi-like scaled wealth distribution in the long-time limit. Multiplicative processes are also investigated, where the amount of asset exchanged is a finite fraction of the wealth of one of the traders. For random multiplicative exchange, a steady state occurs, while in greedy multiplicative exchange a continuously evolving power law wealth distribution arises. Received: 13 August 1997 / Revised: 31 December 1997 / Accepted: 26 January 1998  相似文献   

15.
16.
We analyze the structure of two dimensional disordered cellular systems generated by extensive computer simulations. These cellular structures are studied as topological trees rooted on a central cell or as closed shells arranged concentrically around a germ cell. We single out the most significant parameters that characterize statistically the organization of these patterns. Universality and specificity in disordered cellular structures are discussed. Received: 23 September 1997 / Received in final form: 14 January 1998 / Accepted: 29 January 1998  相似文献   

17.
In order to understand the magnetic field-induced restoration of a highly conductive state in , static (SQUID) and dynamic (ESR and AFR) magnetization measurements were performed on polycrystalline samples and single crystals, respectively. In addition, cantilever and resistivity measurements under steady fields were performed. While the metal-insulator transition curve of the () phase diagram exhibits a first order character, a “spin-flop” transition line divides the insulating state when the magnetic field is applied along the easy axis of magnetization. The effects of a RKKY-type indirect exchange and of applied magnetic field are described within the framework of a generalized Kondo lattice, namely two chains of localised spins coupled through the itinerant spins of the 2D sheets of BETS. The calculations, which can incorporate intramolecular electron correlations within a mean field theory, are in qualitative agreement with the field induced transition from the antiferromagnetic insulating ground state to a canted one, i.e. a not fully oriented paramagnetic, but metallic state. Received: 6 August 1997 / Received: 5 November 1997 / Accepted: 10 November 1997  相似文献   

18.
Robertson has found a projection operator which, applied to the Liouville equation, yields an exact equation for , the information-theoretic phase-space distribution. If the Robertson equation is multiplied by a set [0pt]{} of functions representing physical fluxes, odd under momentum reversal and even under configuration inversion, a set of evolution equations is obtained for time-dependent ensemble averages which are variables of extended thermodynamics. In earlier work, a perturbation calculation was developed, assuming just one variable , for an operator [0pt] occurring in the Robertson equation. This calculation is extended here to the case where there are variables. The coefficients in the evolution equations depend on {} and explicitly on time t at short times. It is shown here that these coefficients exhibit Onsager symmetry at long times, after the transient explicit t-dependence has disappeared, to . Received 13 September 1999 and Received in final form 4 April 2000  相似文献   

19.
We investigate the collective behavior of an Ising lattice gas, driven to non-equilibrium steady states by being coupled to two thermal baths. Monte Carlo methods are applied to a two-dimensional system in which one of the baths is fixed at infinite temperature. Both generic long range correlations in the disordered state and critical properties near the second order transition are measured. Anisotropic scaling, a key feature near criticality, is used to extract and some critical exponents. On the theoretical front, a continuum theory, in the spirit of Landau-Ginzburg, is presented. Being a renormalizable theory, its predictions can be computed by standard methods of -expansions and found to be consistent with simulation data. In particular, the critical behavior of this system belongs to a universality class which is quite different from the uniformly driven Ising model. Received 4 October 2000  相似文献   

20.
We investigate the stochastic dynamics of an one-dimensional ring with N self-driven Brownian particles. In this model neighboring particles interact via conservative Morse potentials. The influence of the surrounding heat bath is modeled by Langevin-forces (white noise) and a constant viscous friction coefficient γ. The Brownian particles are provided with internal energy depots which may lead to active motions of the particles. The depots are realized by an additional nonlinearly velocity-dependent friction coefficient γ 1(v) in the equations of motions. In the first part of the paper we study the partition functions of time averages and thermodynamical quantities (e.g. pressure) characterizing the stationary physical system. Numerically calculated non-equilibrium phase diagrams are represented. The last part is dedicated to transport phenomena by including a homogeneous external force field that breaks the symmetry of the model. Here we find enhanced mobility of the particles at low temperatures. Received 21 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号