首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptive mesh refinement (AMR) shows attractive properties in automatically refining the flow region of interest, and with AMR, better prediction can be obtained with much less labor work and cost compared to manually remeshing or the global mesh refinement. Cartesian AMR is well established; however, AMR on hybrid unstructured mesh, which is heavily used in the high‐Reynolds number flow simulation, is less matured and existing methods may result in degraded mesh quality, which mostly happens in the boundary layer or near the sharp geometric features. User intervention or additional constraints, such as freezing all boundary layer elements or refining the whole boundary layer, are required to assist the refinement process. In this work, a novel AMR strategy is developed to handle existing difficulties. In the new method, high‐order unstructured elements are first generated based on the baseline mesh; then the refinement is conducted in the parametric space; at last, the mesh suitable for the solver is output. Generating refined elements in the parametric space with high‐order elements is the key of this method and this helps to guarantee both the accuracy and robustness. With the current method, 3‐dimensional hybrid unstructured mesh of huge size and complex geometry can be automatically refined, without user intervention nor additional constraints. With test cases including the 2‐dimensional airfoil and 3‐dimensional full aircraft, the current AMR method proves to be accurate, simple, and robust.  相似文献   

2.
In this paper, a central essentially non‐oscillatory approximation based on a quadratic polynomial reconstruction is considered for solving the unsteady 2D Euler equations. The scheme is third‐order accurate on irregular unstructured meshes. The paper concentrates on a method for a metric‐based goal‐oriented mesh adaptation. For this purpose, an a priori error analysis for this central essentially non‐oscillatory scheme is proposed. It allows us to get an estimate depending on the polynomial reconstruction error. As a third‐order error is not naturally expressed in terms of a metric, we propose a least‐square method to approach a third‐order error by a quadratic term. Then an optimization problem for the best mesh metric is obtained and analytically solved. The resulting mesh optimality system is discretized and solved using a global unsteady fixed‐point algorithm. The method is applied to an acoustic propagation benchmark.  相似文献   

3.
The numerical simulation of physical phenomena represented by non‐linear hyperbolic systems of conservation laws presents specific difficulties mainly due to the presence of discontinuities in the solution. State of the art methods for the solution of such equations involve high resolution shock capturing schemes, which are able to produce sharp profiles at the discontinuities and high accuracy in smooth regions, together with some kind of grid adaption, which reduces the computational cost by using finer grids near the discontinuities and coarser grids in smooth regions. The combination of both techniques presents intrinsic numerical and programming difficulties. In this work we present a method obtained by the combination of a high‐order shock capturing scheme, built from Shu–Osher's conservative formulation (J. Comput. Phys. 1988; 77 :439–471; 1989; 83 :32–78), a fifth‐order weighted essentially non‐oscillatory (WENO) interpolatory technique (J. Comput. Phys. 1996; 126 :202–228) and Donat–Marquina's flux‐splitting method (J. Comput. Phys. 1996; 125 :42–58), with the adaptive mesh refinement (AMR) technique of Berger and collaborators (Adaptive mesh refinement for hyperbolic partial differential equations. Ph.D. Thesis, Computer Science Department, Stanford University, 1982; J. Comput. Phys. 1989; 82 :64–84; 1984; 53 :484–512). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The compressible gas flows of interest to aerospace applications often involve situations where shock and expansion waves are present. Decreasing the characteristic dimension of the computational cells in the vicinity of shock waves improves the quality of the computed flows. This reduction in size may be accomplished by the use of mesh adaption procedures. In this paper an analysis is presented of an adaptive mesh scheme developed for an unstructured mesh finite volume upwind computer code. This scheme is tailored to refine or coarsen the computational mesh where gradients of the flow properties are respectively high or low. The refinement and coarsening procedures are applied to the classical gas dynamic problems of the stabilization of shock waves by solid bodies. In particular, situations where oblique shock waves interact with an expansion fan and where bow shocks arise around solid bodies are considered. The effectiveness of the scheme in reducing the computational time, while increasing the solution accuracy, is assessed. It is shown that the refinement procedure alone leads to a number of computational cells which is 20% larger than when alternate passes of refinement and coarsening are used. Accordingly, a reduction of computational time of the same order of magnitude is obtained. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
This work describes the implementation and analysis of high‐order accurate schemes applied to high‐speed flows on unstructured grids. The class of essentially non‐oscillatory schemes (ENO), that includes weighted ENO schemes (WENO), is discussed in the paper with regard to the implementation of third‐ and fourth‐order accurate methods. The entire reconstruction process of ENO and WENO schemes is described with emphasis on the stencil selection algorithms. The stencils can be composed by control volumes with any number of edges, e.g. triangles, quadrilaterals and hybrid meshes. In the paper, ENO and WENO schemes are implemented for the solution of the dimensionless, 2‐D Euler equations in a cell centred finite volume context. High‐order flux integration is achieved using Gaussian quadratures. An approximate Riemann solver is used to evaluate the fluxes on the interfaces of the control volumes and a TVD Runge–Kutta scheme provides the time integration of the equations. Such a coupling of all these numerical tools, together with the high‐order interpolation of primitive variables provided by ENO and WENO schemes, leads to the desired order of accuracy expected in the solutions. An adaptive mesh refinement technique provides better resolution in regions with strong flowfield gradients. Results for high‐speed flow simulations are presented with the objective of assessing the implemented capability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The idea of hp‐adaptation, which has originally been developed for compact schemes (such as finite element methods), suggests an adaptation scheme using a mixture of mesh refinement and order enrichment based on the smoothness of the solution to obtain an accurate solution efficiently. In this paper, we develop an hp‐adaptation framework for unstructured finite volume methods using residual‐based and adjoint‐based error indicators. For the residual‐based error indicator, we use a higher‐order discrete operator to estimate the truncation error, whereas this estimate is weighted by the solution of the discrete adjoint problem for an output of interest to form the adaptation indicator for adjoint‐based adaptations. We perform our adaptation by local subdivision of cells with nonconforming interfaces allowed and local reconstruction of higher‐order polynomials for solution approximations. We present our results for two‐dimensional compressible flow problems including subsonic inviscid, transonic inviscid, and subsonic laminar flow around the NACA 0012 airfoil and also turbulent flow over a flat plate. Our numerical results suggest the efficiency and accuracy advantages of adjoint‐based hp‐adaptations over uniform refinement and also over residual‐based adaptation for flows with and without singularities.  相似文献   

7.
In this paper, we introduce a shock‐capturing artificial viscosity technique for high‐order unstructured mesh methods. This artificial viscosity model is based on a non‐dimensional form of the divergence of the velocity. The technique is an extension and improvement of the dilation‐based artificial viscosity methods introduced in Premasuthan et al., 15 and further extended in Nguyen and Peraire 27 . The approach presented has a number attractive properties including non‐dimensional analytical form, sub‐cell resolution, and robustness for complex shock flows on anisotropic meshes. We present extensive numerical results to demonstrate the performance of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Adaptive mesh techniques are used widely in the numerical simulations of fluid flows, and the simulation results with high accuracies are obtained by appropriate mesh adaptations. However, gas–liquid two‐phase flows are still difficult to be simulated on adaptive meshes, especially on unstructured adaptive meshes, because the physical phenomena near gas–liquid interfaces are highly complicated and in general, not modeled appropriately on adaptive meshes. In this paper, a high‐precision unstructured adaptive mesh technique for gas–liquid two‐phase flows is developed and verified/validated. In the unstructured adaptive mesh technique, the PLIC algorithm is employed to simulate interfacial dynamic behaviors and, therefore, the reconstruction method for the interfaces in refined cells is developed, which satisfies the gas and liquid volume conservations and geometrical conservations of interfaces. In addition, the physics‐based consideration is performed on the momentum calculations near interfaces, and the calculation method with gas and liquid momentum conservations is developed. For verification, the slotted‐disk revolution problem is solved. As a result, the unstructured adaptive mesh technique succeeds in reproducing the slotted‐disk shape accurately and well maintaining the shape after one full‐revolution. The dam‐break problem is also simulated and the momentum conservative calculation method succeeds in providing physically appropriate results, which show good agreements with experimental data. Therefore, it is confirmed that the developed unstructured adaptive mesh technique is very efficient to simulate gas–liquid two‐phase flows accurately. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
An unstructured dynamic mesh adaptation and load balancing algorithm has been developed for the efficient simulation of three‐dimensional unsteady inviscid flows on parallel machines. The numerical scheme was based on a cell‐centred finite‐volume method and the Roe's flux‐difference splitting. Second‐order accuracy was achieved in time by using an implicit Jacobi/Gauss–Seidel iteration. The resolution of time‐dependent solutions was enhanced by adopting an h‐refinement/coarsening algorithm. Parallelization and load balancing were concurrently achieved on the adaptive dynamic meshes for computational speed‐up and efficient memory redistribution. A new tree data structure for boundary faces was developed for the continuous transfer of the communication data across the parallel subdomain boundary. The parallel efficiency was validated by applying the present method to an unsteady shock‐tube problem. The flows around oscillating NACA0012 wing and F‐5 wing were also calculated for the numerical verification of the present dynamic mesh adaptation and load balancing algorithm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A parallel DSMC method based on a cell‐based data structure is developed for the efficient simulation of rarefied gas flows on PC‐clusters. Parallel computation is made by decomposing the computational domain into several subdomains. Dynamic load balancing between processors is achieved based on the number of simulation particles and the number of cells allocated in each subdomain. Adjustment of cell size is also made through mesh adaptation for the improvement of solution accuracy and the efficient usage of meshes. Applications were made for a two‐dimensional supersonic leading‐edge flow, the axi‐symmetric Rothe's nozzle, and the open hollow cylinder flare flow for validation. It was found that the present method is an efficient tool for the simulation of rarefied gas flows on PC‐based parallel machines. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we present a computationally efficient semi‐implicit scheme for the simulation of three‐dimensional hydrostatic free surface flow problems on staggered unstructured Voronoi meshes. For each polygonal control volume, the pressure is defined in the cell center, whereas the discrete velocity field is given by the normal velocity component at the cell faces. A piecewise high‐order polynomial vector velocity field is then reconstructed from the scalar normal velocities at the cell faces by using a new high‐order constrained least‐squares reconstruction operator. The reconstructed high‐order piecewise polynomial velocity field is used for trajectory integration in a semi‐Lagrangian approach to discretize the nonlinear convective terms in the governing PDE. For that purpose, a high‐order Taylor method is used as ODE integrator. The resulting semi‐implicit algorithm is extensively validated on a large set of different academic test problems with exact analytical solution and is finally applied to a real‐world engineering problem consisting of a curved channel upstream of two micro‐turbines of a hydroelectric power plant. For this realistic case, some experimental reference data are available from field measurements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
在均匀网格上求解对流占优问题时,往往会产生数值震荡现象,因此需要局部加密网格来提高解的精度。针对对流占优问题,设计了一种新的自适应网格细化算法。该方法采用流线迎风SUPG(Petrov-Galerkin)格式求解对流占优问题,定义了网格尺寸并通过后验误差估计子修正来指导自适应网格细化,以泡泡型局部网格生成算法BLMG为网格生成器,通过模拟泡泡在区域中的运动得到了高质量的点集。与其他自适应网格细化方法相比,该方法可在同一框架内实现网格的细化和粗化,同时在所有细化层得到了高质量的网格。数值算例结果表明,该方法在求解对流占优问题时具有更高的数值精度和更好的收敛性。  相似文献   

13.
Feature‐based solution‐adaptive mesh refinement is an attractive strategy when it is known a priori that the resolution of certain key features is critical to achieving the objectives of a simulation. In this paper, we apply vortex characterization techniques, which are typically employed to visualize vortices, to identify regions of the computational domain for mesh refinement. We investigate different refinement strategies that are facilitated by these vortex characterization techniques to simulate the flow past a wing in a wind tunnel. Our results, which we compare with experimental data, indicate that it is necessary to refine the region within and near the vortex extent surface to obtain an accurate prediction. Application of the identified mesh refinement strategy also produced observed improvement in the results predicted for a spinning missile with deflected canards. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
With high‐order methods becoming more widely adopted throughout the field of computational fluid dynamics, the development of new computationally efficient algorithms has increased tremendously in recent years. One of the most recent methods to be developed is the flux reconstruction approach, which allows various well‐known high‐order schemes to be cast within a single unifying framework. Whilst a connection between flux reconstruction and the more widely adopted discontinuous Galerkin method has been established elsewhere, it still remains to fully investigate the explicit connections between the many popular variants of the discontinuous Galerkin method and the flux reconstruction approach. In this work, we closely examine the connections between three nodal versions of tensor‐product discontinuous Galerkin spectral element approximations and two types of flux reconstruction schemes for solving systems of conservation laws on quadrilateral meshes. The different types of discontinuous Galerkin approximations arise from the choice of the solution nodes of the Lagrange basis representing the solution and from the quadrature approximation used to integrate the mass matrix and the other terms of the discretization. By considering both linear and nonlinear advection equations on a regular grid, we examine the mathematical properties that connect these discretizations. These arguments are further confirmed by the results of an empirical numerical study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
We derive and implement two types of anisotropic indicators which can be used within an anisotropic refinement algorithm for second but also for higher‐order discontinuous Galerkin discretizations. Although the first type of indicator employs the possible inter‐element discontinuities of the discrete functions, the second type of indicator estimates the approximation error in terms of second but possibly also higher‐order derivatives. We implement a simple extension of these indicators to systems of equations which performs similar to the so‐called metric intersection used to combine the metric information of several solution components and is applicable to higher‐order discretizations as well. The anisotropic indicators are incorporated into an adaptive refinement algorithm which uses state‐of‐the‐art residual‐based or adjoint‐based indicators for goal‐oriented refinement to select the elements to be refined, whereas the anisotropic indicators determine which anisotropic case the selected elements shall be refined with. We demonstrate the performance of the anisotropic refinement algorithm for sub‐, trans‐ and supersonic, inviscid and viscous compressible flows around a NACA0012 airfoil. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A multi‐block curvilinear mesh‐based adaptive mesh refinement (AMR) method is developed to satisfy the competing objectives of improving accuracy and reducing cost. Body‐fitted curvilinear mesh‐based AMR is used to capture flow details of various length scales. A series of efforts are made to guarantee the accuracy and robustness of the AMR system. A physics‐based refinement function is proposed, which is proved to be able to detect both shock wave and vortical flow. The curvilinear mesh is refined with cubic interpolation, which guarantees the aspect ratio and smoothness. Furthermore, to enable its application in complex configurations, a sub‐block‐based refinement strategy is developed to avoid generating invalid mesh, which is the consequence of non‐smooth mesh lines or singular geometry features. A newfound problem of smaller wall distance, which negatively affects the stability and is never reported in the literature, is also discussed in detail, and an improved strategy is proposed. Together with the high‐accuracy numerical scheme, a multi‐block curvilinear mesh‐based AMR system is developed. With a series of test cases, the current method is verified to be accurate and robust and be able to automatically capture the flow details at great cost saving compared with the global refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
New a posteriori error indicators based on edgewise slope‐limiting are presented. The L2‐norm is employed to measure the error of the solution gradient in both global and element sense. A second‐order Newton–Cotes formula is utilized in order to decompose the local gradient error from a ??1 finite element solution into a sum of edge contributions. The slope values at edge midpoints are interpolated from the two adjacent vertices. Traditional techniques to recover (superconvergent) nodal gradient values from consistent finite element slopes are reviewed. The deficiencies of standard smoothing procedures—L2‐projection and the Zienkiewicz–Zhu patch recovery—as applied to nonsmooth solutions are illustrated for simple academic configurations. The recovered gradient values are corrected by applying a slope limiter edge‐by‐edge so as to satisfy geometric constraints. The direct computation of slopes at edge midpoints by means of limited averaging of adjacent gradient values is proposed as an inexpensive alternative. Numerical tests for various solution profiles in one and two space dimensions are presented to demonstrate the potential of this postprocessing procedure as an error indicator. Finally, it is used to perform adaptive mesh refinement for compressible inviscid flow simulations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Hybrid schemes are very efficient for complex compressible flow simulation. However, for most existing hybrid schemes in literature, empirical problem‐dependent parameters are always needed to detect shock waves and hence greatly decrease the robustness and accuracy of the hybrid scheme. In this paper, based on the nonlinear weights of the weighted essentially non‐oscillatory (WENO) scheme, a novel weighting switch function is proposed. This function approaches 1 with high‐order accuracy in smooth regions and 0 near discontinuities. Then, with the new weighting switch function, a seventh‐order hybrid compact‐reconstruction WENO scheme (HCCS) is developed. The new hybrid scheme uses the same stencil as the fifth‐order WENO scheme, and it has seventh‐order accuracy in smooth regions even at critical points. Numerical tests are presented to demonstrate the accuracy and robustness of both the switch function and HCCS. Comparisons also reveal that HCCS has lower dissipation and less computational cost than the seventh‐order WENO scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This article presents a novel shock‐capturing technique for the discontinuous Galerkin (DG) method. The technique is designed for compressible flow problems, which are usually characterized by the presence of strong shocks and discontinuities. The inherent structure of standard DG methods seems to suggest that they are especially adapted to capture shocks because of the numerical fluxes based on suitable approximate Riemann solvers, which, in practice, introduces some stabilization. However, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for large high‐order elements. Here, a new basis of shape functions is introduced. It has the ability to change locally between a continuous or discontinuous interpolation depending on the smoothness of the approximated function. In the presence of shocks, the new discontinuities inside an element introduce the required stabilization because of numerical fluxes. Large high‐order elements can therefore be used and shocks captured within a single element, avoiding adaptive mesh refinement and preserving the locality and compactness of the DG scheme. Several numerical examples for transonic and supersonic flows are studied to demonstrate the applicability of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号