首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.  相似文献   

2.
A new finite difference methodology is developed for the solution of computational fluid dynamics problems that do not require the use of staggered grid systems. Previous successful and robust non‐staggered methods, which used primitive variables and mass conservation in order to solve the pressure field, either interpolate cell‐face velocities or interpolate the pressure gradients in a special way, usually with an upwind‐bias to avoid the problem of odd–even coupling between the velocity and pressure fields. The new methodology presented does not detail a ‘special interpolation procedure for a primitive variable’, however, it manages to avoid the problem of odd–even coupling. The odd–even coupling is avoided by applying fourth‐order dissipation to the pressure field. It is shown that this approach can be regarded as a modified Rhie and Chow scheme. The method is implemented using a SIMPLE‐type algorithm and is applied to two test problems: laminar flow over a backward‐facing step and laminar flow in a square cavity with a driven lid. Good agreement is obtained between the numerical solutions and the corresponding benchmark solutions. The pressure dissipation term was found to successfully suppress wiggles in the pressure field. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a numerical method, which is about the coupling of continuous and discontinuous Galerkin method based on the splitting scheme, is presented for the calculation of viscoelastic flows of the Oldroyd‐B fluid. The momentum equation is discretized in time by using the Adams‐Bashforth second‐order algorithm, and then decoupled via the splitting approach. Considering the Oldroyd‐B constitutive equation, the second‐order Runge‐Kutta approach is selected to complete the temporal discretization. As for the spatial discretizations, the fundamental purpose is to make the best of finite element method (FEM) and discontinuous Galerkin (DG) method to handle different types of equations. Specifically speaking, for the subequations, FEM is chosen to treat the Poisson and Helmholtz equations, and DG is employed to deal with the nonlinear convective term. In addition, because of the hyperbolic nature, DG is also utilized to discretize the Oldroyd‐B constitutive equation spatially. This coupled method avoids resorting to extra stabilization technique occurred in standard FEM framework even for moderately high values of Weissenberg number and also reduces the complexity compared with unified DG scheme. The Oldroyd‐B model is applied to investigate several typical and challenging benchmarks, such as the 4:1 planar contraction flow and the lid‐driven cavity flow, with a wide range of Weissenberg number to illustrate the feasibility, robustness, and validity of our coupled method.  相似文献   

4.
The shock instability phenomenon is a well‐known problem for hypersonic flow computation by the shock‐capturing Roe scheme. The pressure checkerboard is another well‐known problem for low‐Mach‐number flow computation. The momentum interpolation method (MIM) is necessary for low‐Mach‐number flows to suppress the pressure checkerboard problem, and the pressure‐difference‐driven modification for cell face velocity can be regarded as a version of the MIM by subdividing the numerical dissipation of the Roe scheme. In this paper, MIM has been discovered through analysis and numerical tests to have the most important function in shock instability. MIM should be completely removed for nonlinear flows. However, the unexpected MIM is activated on the cell face nearly parallel to the flow for the high‐Mach‐number flows or low‐Mach‐number cells in numerical shock. Therefore, MIM should be retained for low‐Mach‐number flows and be completely removed for high‐Mach‐number flows and low‐Mach‐number cells in numerical shock. For such conditions, two coefficients are designed on the basis of the local Mach number and a shock detector. Thereafter, the improved Roe scheme is proposed. This scheme considers the requirement of MIM for incompressible and compressible flows, and is validated for good performance of numerical tests. An acceptable result can also be obtained with only the Mach number coefficient for general practical computation. Therefore, the objective of decreasing rather than increasing numerical dissipation to cure shock instability can be achieved with simple modification. Moreover, the mechanism of shock instability has been profoundly understood, in which MIM plays the most important role, although it is not the only factor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the velocities and first‐order upwind approximation for the viscoelastic stress. A non‐uniform staggered grid system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity equations. The non‐linear algebraic equations over the flow domain are solved iteratively by the symmetrical coupled Gauss–Seidel (SCGS) method. In both, the full approximation storage (FAS) multigrid algorithm is used. An Oldroyd‐B fluid model was selected for the calculation. Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to be stable and smooth. The solutions show that at high Weissenberg number the domain must be long enough. The convergence of the method has been verified with grid refinement. All the calculations have been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
We report an adaptive viscoelastic stress splitting (AVSS) scheme, which was found to be extremely robust in the numerical simulation of viscoelastic flow involving steep stress boundary layers. The scheme is different from the elastic viscous split stress (EVSS) in that the local Newtonian component is allowed to depend adaptively on the magnitude of the local elastic stress. Two decoupled versions of the scheme were implemented for the Upper Convected Maxwell (UCM) model: the streamline integration (AVSS/SI), and the streamline upwind Petrov-Galerkin (AVSS/SUPG) methods of integrating the stress. The implementations were benchmarked against the known analytic Poiseuille solution, and no upper limiting Weissenberg number was found (the computation was stopped at Weissenberg number of O(104)). The flow past a sphere in a tube was solved next, giving convergent results up to a Weissenberg number of 3.2 with the AVSS/SI and 1.55 with the AVSS/SUPG (both were decoupled schemes; without the adaptive scheme, the limiting Weissenberg number for the decoupled streamline integration method was about 0.3). These results show that the decoupled AVSS is more stable than the corresponding EVSS, and the SI is more robust than SUPG in solving the constitutive equation of hyperbolic type. In addition, we found a very long stress wake behind the sphere, and a weak vortex in the rear stagnation region at a Weissenberg number above Wi of about 1.6, which does not seem to increase in size or strength with increasing Wi.  相似文献   

7.
This study presents characteristic‐based split (CBS) algorithm in the meshfree context. This algorithm is the extension of general CBS method which was initially introduced in finite element framework. In this work, the general equations of flow have been represented in the meshfree context. A new finite element and MFree code is developed for solving flow problems. This computational code is capable of solving both time‐dependent and steady‐state flow problems. Numerical simulation of some known benchmark flow problems has been studied. Computational results of MFree method have been compared to those of finite element method. The results obtained have been verified by known numerical, analytical and experimental data in the literature. A number of shape functions are used for field variable interpolation. The performance of each interpolation method is discussed. It is concluded that the MFree method is more accurate than FEM if the same numbers of nodes are used for each solver. Meshfree CBS algorithm is completely stable even at high Reynolds numbers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The paper reports an exact kinematics for the squeezing flow from a cone of a general viscoelastic fluid. To obtain numerical values for the stresses, a network model that allows stress overshoot and shear-thinning in the start-up of a shear flow is adopted. Both these features are important in this flow. For the special case of an Oldroyd-B fluid it is shown that there is a limiting Weissenberg number above which at least one component of the stresses increases unboundedly with time.  相似文献   

9.
The paper reports an exact solution for the squeezing flow from a wedge of a general viscoelastic liquid. To obtain numerical values for the field variables, a network model that allows stress overshoot and shear-thinning in the start-up of a shear flow is adopted. It is found that both these features are important in this transient flow; stress overshoot is responsible for a stiffer response of the fluid (compared to the inelastic case) at moderate time —at large time, shear-thinning dominates and the fluid behaves like an inelastic fluid. On the other hand, the Oldroyd-B fluid always predicts a softer response than the Newtonian one. Furthermore, there is a limiting Weissenberg number above which one component of the stresses of the Oldroyd-B fluid increases unboundedly with time. This limiting Weissenberg number is approximately sol23.  相似文献   

10.
A finite volume, time‐marching for solving time‐dependent viscoelastic flow in two space dimensions for Oldroyd‐B and Phan Thien–Tanner fluids, is presented. A non‐uniform staggered grid system is used. The conservation and constitutive equations are solved using the finite volume method with an upwind scheme for the viscoelastic stresses and an hybrid scheme for the velocities. To calculate the pressure field, the semi‐implicit method for the pressure linked equation revised method is used. The discretized equations are solved sequentially, using the tridiagonal matrix algorithm solver with under‐relaxation. In both, the full approximation storage multigrid algorithm is used to speed up the convergence rate. Simulations of viscoelastic flows in four‐to‐one abrupt plane contraction are carried out. We will study the behaviour at the entrance corner of the four‐to‐one planar abrupt contraction. Using this solver, we show convergence up to a Weissenberg number We of 20 for the Oldroyd‐B model. No limiting Weissenberg number is observed even though a Phan Thien–Tanner model is used. Several numerical results are presented. Smooth and stable solutions are obtained for high Weissenberg number. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
This is the second report on the development of a highly accurate interpolation method, which is called cubic interpolation with volume/area (CIVA) co‐ordinates, for mesh‐free flow simulations. In this paper, the method of determining the c‐parameter of CIVA using a constant curvature condition is first considered for the two‐ and three‐dimensional cases. A computation of a three‐dimensional passive scalar advection problem is performed for accuracy verification and for comparison with widely used methods. Then, an application algorithm of the CIVA method respecting incompressible fluid simulation is presented. As the incompressible condition based on Lagrangian approaches causes problems, in this paper we consider the condition based on the conventional Eulerian approach. The CIVA‐based incompressible flow simulation algorithm enables a highly accurate simulation of many kinds of problems that have complicated geometries and involve complicated phenomena. To confirm the facts, numerical analyzes are executed for some benchmark problems, namely flow in a square cavity, free surface sloshing and moving boundary problems in complex geometries. The results show that the method achieves high accuracy and has high flexibility, even for the flows involving high Reynolds number, complicated geometries, moving boundaries and free surfaces. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Current existing main nuclear thermal‐hydraulics (T‐H) system analysis codes, such as RALAP5, TRACE, and CATHARE, play a crucial role in the nuclear engineering field for the design and safety analysis of nuclear reactor systems. However, two‐fluid model used in these T‐H system analysis codes is ill posed, easily leading to numerical oscillations, and the classical first‐order methods for temporal and special discretization are widely employed for numerical simulations, yielding excessive numerical diffusion. Two‐fluid seven‐equation two‐pressure model is of particular interest due to the inherent well‐posed advantage. Moreover, high‐order accuracy schemes have also attracted great attention to overcome the challenge of serious numerical diffusion induced by low‐order time and space schemes for accurately simulating nuclear T‐H problems. In this paper, the semi‐implicit solution algorithm with high‐order accuracy in space and time is developed for this well‐posed two‐fluid model and the robustness and accuracy are verified and assessed against several important two‐phase flow benchmark tests in the nuclear engineering T‐H field, which include two linear advection problems, the oscillation problem of the liquid column, the Ransom water faucet problem, the reversed water faucet problem, and the two‐phase shock tube problem. The following conclusions are achieved. (1) The proposed semi‐implicit solution algorithm is robust in solving two‐phase flows, even for fast transients and discontinuous solutions. (2) High‐order schemes in both time and space could prevent excessive numerical diffusion effectively and the numerical simulation results are more accurate than those of first‐order time and space schemes, which demonstrates the advantage of using high‐order schemes.  相似文献   

13.
A general and robust subgrid closure model for two‐material cells is proposed. The conservative quantities of the entire cell are apportioned between two materials, and then, pressure and velocity are fully or partially equilibrated by modeling subgrid wave interactions. An unconditionally stable and entropy‐satisfying solution of the processes has been successfully found. The solution is valid for arbitrary level of relaxation. The model is numerically designed with care for general materials and is computationally efficient without recourse to subgrid iterations or subcycling in time. The model is implemented and tested in the Lagrange‐remap framework. Two interesting results are observed in 1D tests. First, on the basis of the closure model without any pressure and velocity relaxation, a material interface can be resolved without creating numerical oscillations and/or large nonphysical jumps in the problem of the modified Sod shock tube. Second, the overheating problem seen near the wall surface can be solved by the present entropy‐satisfying closure model. The generality, robustness, and efficiency of the model make it useful in principle in algorithms, such as ALE methods, volume of fluid methods, and even some mixture models, for compressible two‐phase flow computations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The problem of periodic flow of an incompressible fluid through a pipe, which is driven by an oscillating pressure gradient (e.g. a reciprocating piston), is investigated in the case of a large Reynolds number. This process is described by a singularly perturbed parabolic equation with a periodic right‐hand side, where the singular perturbation parameter is the viscosity ν. The periodic solution of this problem is a solution of the Navier–Stokes equations with cylindrical symmetry. We are interested in constructing a parameter‐robust numerical method for this problem, i.e. a numerical method generating numerical approximations that converge uniformly with respect to the parameter ν and require a bounded time, independent of the value of ν, for their computation. Our method comprises a standard monotone discretization of the problem on non‐standard piecewise uniform meshes condensing in a neighbourhood of the boundary layer. The transition point between segments of the mesh with different step sizes is chosen in accordance with the behaviour of the analytic solution in the boundary layer region. In this paper we construct the numerical method and discuss the results of extensive numerical experiments, which show experimentally that the method is parameter‐robust. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
We propose a fully conservative high‐order upwind multi‐moment method for the conservation equation. The proposed method is based on a third‐order polynomial interpolation function and semi‐Lagrangian formulation and is a variant of the constrained interpolation profile conservative semi‐Lagrangian scheme with third‐order polynomial function method. The third‐order interpolation function is constructed based on three constraints in the upwind cell (two boundary values and a cell average) and a constraint in the downwind cell (a cell center value). The proposed method shows fourth‐order accuracy in a benchmark problem (sine wave propagation). We also propose a less oscillatory formulation of the proposed method. The less oscillatory formulation can minimize numerical oscillations. These methods were validated through scalar transport problems, and compressible flow problems (shock tube and 2D explosion problems). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Counter flows of a viscoelastic fluid described by the rheological Oldroyd model in crossshaped channels are investigated. The modeling is based on the pressure correction method in a convenient-in-use form and with a simple topology of the computation grid and formally proved convergence. It is shown that, starting from certain threshold values of the Weissenberg numbers, the flow pattern in the stabilization stage exhibits considerable changes following two different mechanisms, depending on the Reynolds number. In particular, at low Reynolds numbers (less than 0.1) the flows involve vortex-like structures near the central point, where at the same time anomalies in normal stress distributions are observable. The similarity of these structures with the elastic instability phenomena, which were previously observed in the experimental realizations of the counter flows of this type and in other processes, is shown. To demonstrate the numerical procedure convergence, the results of calculations with different computation grid steps varied on a wide range are presented. In the context of the problem considered the general features of elastic instability are discussed.  相似文献   

17.
Simulation of nano‐scale channel flows using a coupled Navier–Stokes/Molecular Dynamics (MD) method is presented. The flow cases serve as examples of the application of a multi‐physics computational framework put forward in this work. The framework employs a set of (partially) overlapping sub‐domains in which different levels of physical modelling are used to describe the flow. This way, numerical simulations based on the Navier–Stokes equations can be extended to flows in which the continuum and/or Newtonian flow assumptions break down in regions of the domain, by locally increasing the level of detail in the model. Then, the use of multiple levels of physical modelling can reduce the overall computational cost for a given level of fidelity. The present work describes the structure of a parallel computational framework for such simulations, including details of a Navier–Stokes/MD coupling, the convergence behaviour of coupled simulations as well as the parallel implementation. For the cases considered here, micro‐scale MD problems are constructed to provide viscous stresses for the Navier–Stokes equations. The first problem is the planar Poiseuille flow, for which the viscous fluxes on each cell face in the finite‐volume discretization are evaluated using MD. The second example deals with fully developed three‐dimensional channel flow, with molecular level modelling of the shear stresses in a group of cells in the domain corners. An important aspect in using shear stresses evaluated with MD in Navier–Stokes simulations is the scatter in the data due to the sampling of a finite ensemble over a limited interval. In the coupled simulations, this prevents the convergence of the system in terms of the reduction of the norm of the residual vector of the finite‐volume discretization of the macro‐domain. Solutions to this problem are discussed in the present work, along with an analysis of the effect of number of realizations and sample duration. The averaging of the apparent viscosity for each cell face, i.e. the ratio of the shear stress predicted from MD and the imposed velocity gradient, over a number of macro‐scale time steps is shown to be a simple but effective method to reach a good level of convergence of the coupled system. Finally, the parallel efficiency of the developed method is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
This paper reports an exact solution for the coaxial disk flow of an Oldroyd-B fluid. The flow is approximately generated by the parallel-plate viscometer. Asymptotic and numerical solutions are reported showing that there is a critical Weissenberg number based on the angular velocity and the Maxwellian relaxation time, above which the flow is unstable. A linearized stability analysis for the basic inertialess flow confirms this numerical instability and yields the critical Weissenberg number.  相似文献   

19.
 Planar contraction flows of non-Newtonian fluids with integral constitutive models are studied to investigate the problem of numerical breakdown at high Weissenberg or Debrorah numbers. Spurious shear stress extrema are found on the wall downstream of the re-entrant corner for both sharp and rounded corners. Moreover, a non-monotonic relation between shear stress and strain rate is found when the Deborah number limit is approached, which correlates with these shear extrema. This strongly suggests that non-monotonicity between shear stress and strain rate may be responsible for the Deborah number limit problem in contraction flow simulations. This non-monotonicity is caused by the inaccuracy of the quadrature, using constitutive equations that do not have shear stress maxima when exactly evaluated. This conclusion agrees with recent analytical findings by others that inaccuracy of the integration along the streamlines – either by numerical integration or asymptotic approximation – makes the problem ill-conditioned, with spurious growth occurring on the wall downstream of the re-entrant corner. Received: 5 March 1999/Accepted: 1 September 1999  相似文献   

20.
This article presents a novel shock‐capturing technique for the discontinuous Galerkin (DG) method. The technique is designed for compressible flow problems, which are usually characterized by the presence of strong shocks and discontinuities. The inherent structure of standard DG methods seems to suggest that they are especially adapted to capture shocks because of the numerical fluxes based on suitable approximate Riemann solvers, which, in practice, introduces some stabilization. However, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for large high‐order elements. Here, a new basis of shape functions is introduced. It has the ability to change locally between a continuous or discontinuous interpolation depending on the smoothness of the approximated function. In the presence of shocks, the new discontinuities inside an element introduce the required stabilization because of numerical fluxes. Large high‐order elements can therefore be used and shocks captured within a single element, avoiding adaptive mesh refinement and preserving the locality and compactness of the DG scheme. Several numerical examples for transonic and supersonic flows are studied to demonstrate the applicability of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号