首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Having nearly exhausted the possibilities for generating peak capacity through improvements in column technology, chromatographers are increasingly looking to alternative ways of maximising chromatographic separation. In recent years there has been increasing activity in the field of comprehensive multidimensional separations to meet analysis demands. Comprehensive two-dimensional liquid chromatography (LC×LC) approaches offer high peak capacity which leads to significantly improved analytical performance over single-column liquid chromatography. There are several closely related avenues available for achieving an LC×LC separation and this review pays special attention to the different valve-based interfaces that have been used to comprehensively couple the first and second dimension columns in LC×LC systems. A brief discussion of column choices for selected applications and the conditions employed is also presented.  相似文献   

2.
Comprehensive two-dimensional liquid chromatography-size-exclusion chromatography (LC x SEC) was investigated as a tool for the characterization of functional poly(methyl methacrylate) (PMMA) polymers. Ultraviolet-absorbance and evaporative light-scattering detection (ELSD) were used. A simple method to quantify ELSD data is presented. Each data point from the ELSD chromatogram can be converted into a mass concentration using experimental calibration curves. The qualitative and quantitative information obtained on two representative samples is used to demonstrate the applicability of LC x SEC for determining the mutually dependent molar-mass distributions (MMD) and functionality-type distributions (FTD) of functional polymers. The influence of the molar mass on the retention behavior in LC was investigated using LC x SEC for hydroxyl-functional PMMA polymers. The critical conditions, at which retention is--by definition--independent of molar mass, were not exactly the same for PMMA series with different end-groups. Our observations are in close agreement with theoretical curves reported in the literature. However, for practical applications of LC x SEC it is not strictly necessary to work at the exact critical solvent composition. Near-critical conditions are often sufficient to determine the mutually dependent distributions (MMD and FTD) of functional polymers.  相似文献   

3.
Gradient-elution liquid chromatography (GELC) is a powerful tool for the characterization of synthetic polymers. However, gradient-elution chromatograms often suffer from breakthrough phenomena. Breakthrough can be averted by using a sample solvent as weak as the mobile phase. However, this approach is only applicable to polymers for which a sufficiently strong solvent exists which is at the same time a weak eluent. Finding such a solvent for a given polymer can be laborious or may even be impossible. Besides, when working with comprehensive two-dimensional LC the effluent of the first dimension is the injection solvent of the second dimension. In this case, it is not possible to avoid breakthrough by adjusting the eluent strength of the second-dimension injection solvent. Therefore, another strategy to avert breakthrough has to be implemented. In this work, we successfully avoided breakthrough in GELC by mixing the mobile phase not before, but after the autosampler. This was demonstrated measuring a blend of poly(methyl methacrylate) standards with different molecular-weights as model mixture with comprehensive two-dimensional GELC × size-exclusion chromatography. The strategy is thought to be applicable to all substances with a sufficiently strong dependence of retention on mobile-phase composition. This typically applies to large molecules (synthetic and natural polymers) and allows efficient refocusing. Unretained and barely retained substances are not refocused and therefore suffer in the proposed setup from peak broadening.  相似文献   

4.
In this review, instrumental aspects of comprehensive two-dimensional liquid chromatography coupled with mass spectrometry are presented. The milestones of LC×LC are briefly summarized. Instrument configuration, selection of experimental conditions, the different interfaces used in the system and the current applications of LC×LC–MS systems are described.  相似文献   

5.
6.
Two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography (2D-RPLC/HILIC) system was successfully applied for comprehensive characterization of steviol glycosides from Stevia rebaudiana. The experiments were performed in offline mode using an XCharge C18 column in first dimension and an XAmide column in second dimension. In first dimension, preliminary separation of Stevia aqueous extract was accomplished and 30 fractions were collected. Then fractions 1-20 were selected for further purification and 13 compounds with high purity were obtained in second dimension. Comprehensive characterization of these compounds was completed by determination of their retention time, accurate molecular weight, diagnostic fragmentation ions, and nuclear magnetic resonance spectroscopy. As a result, all nine known steviol glycosides, as well as other four steviol glycosides were fully purified. The result demonstrated that this procedure is an effective approach for the preparative separation and comprehensive characterization of steviol glycosides in Stevia. This 2D-RPLC/HILIC method will be a promising tool for the purification of low-abundance compounds from natural products.  相似文献   

7.
A comprehensive two-dimensional liquid chromatography method has been applied for the quantification of polyphenols in red wines and compared to the most commonly employed conventional LC approach. Such methodology comprised the use of a microbore conventional HPLC column packed with totally porous particles in the first dimension and a partially porous column of conventional diameter in the second dimension. Even though a good number of applications in comprehensive LC have been reported, quantification experiments have been rarely described. To this regard, the advantages of comprehensive LC together with the employment of dedicated software capable of detecting and quantifying each peak from the 2D plot, have been taken into account for quantifying the most representative polyphenols in three different commercial Sicilian red wine samples. The optimized method has been validated in terms of linearity, sensitivity, detection and quantification limits. LODs as low as 0.02 ppm were obtained using the one-dimensional HPLC-DAD method, whereas values lower than 0.10 ppm were obtained by comprehensive LC. However, comprehensive LC allowed the quantification of a higher number of compounds with RSD lower than 10% thanks to its improved resolving power. The separation capabilities of comprehensive LC allowed the analysis of complex natural samples without any pre-treatment to effectively reduce the interferences coming from the matrix.  相似文献   

8.
A comprehensive two-dimensional liquid chromatographic system incorporating a vacuum-evaporation interface was developed. Normal-phase liquid chromatography with a CN microcolumn was used as the first dimension (1(st)-D), and reversed-phase liquid chromatography with a C(18) monolithic column was used as the second dimension (2(nd)-D). An electronically controlled dual-position, ten-port valve with two identical storage loops served as the interface and the analysis time in the 2(nd)-D was 1.5 min. The solvent in the loops of the interface was evaporated at 25 degrees C under vacuum conditions, leaving the analytes on the inner wall of the loops. The mobile phase of the 2(nd)-D dissolved the analytes in the loop and injected them onto the second column, allowing an on-line solvent exchange of the fractions from the 1(st)-D to the 2(nd)-D. The chromatographic resolution of analytes on the two dimensions was evaluated. Sample loss due to evaporation in the interface was investigated with standard samples having different boiling points. The usefulness of the comprehensive 2-DLC system was demonstrated in the analysis of a traditional Chinese medicine Radix salviae miltiorrhiza bage extract.  相似文献   

9.
Gradient-elution LC × LC is a valuable technique for the characterization of complex biological samples as well as for synthetic polymers. Breakthrough and viscous fingering may yield misleading information on the sample characteristics or deteriorate separation. In LC × SEC another phenomenon may jeopardize the separation. If the analytes adsorb on the SEC column under the injection-plug conditions, peak splitting may occur. In LC × LC the effluent from the first column is the sample solvent for the analytes injected into the second dimension. If a gradient-elution LC × SEC setup is used (i.e. if reversed-phase gradient-elution LC is coupled to organic SEC and if normal-phase gradient-elution LC is coupled to SEC with a polar solvent), the percentage of weak solvent may be significant, especially at short analysis times. In this case adsorption in the first-dimension-effluent zone on the second-dimension SEC column can become an issue and two peaks--the first eluting in size-exclusion mode and the second undergoing adsorption--can be obtained. The work presented in this paper documents peak splitting in LC × SEC of polymers. The adsorption of the polymer on the size-exclusion column was proven in one-dimensional isocratic runs. The observed effects were modeled and visualized through simulation. Studies on the influence of the transfer volume were carried out. Keeping the transfer volume as small as possible helped to minimize peak splitting due to adsorption.  相似文献   

10.
11.
A comprehensive two-dimensional reversed-phase reversed-phase liquid chromatographic system for the separation of a complex mixture of oligostyrenes was developed using results from a previous theoretical assessment of the informational similarity, percent synentropy, orthogonality and peak capacity of hypothetically coupled systems. The degree of sample attribute order in the first separation dimension was also used in the development of the experimental two-dimensional system. A C18(methanol)/CCZ(acetonitrile) two-dimensional system was chosen for the comprehensive analysis of the oligostyrene mixtures because this system had the lowest solute crowding, highest orthogonality and was observed to have order with respect to a sample attribute in the first separation dimension. The separations achieved were in full agreement with the results from information theory and (a geometric approach to) factor analysis assessments. High sampling rates in the first liquid chromatographic dimension were shown to be impossible or inefficient when the peak capacity and separation time of the second dimension was high or when the aim of the exercise was to isolate individual sample constituents in high yield.  相似文献   

12.
A high-temperature ionic liquid, trihexyl(tetradecyl)phosphonium bis(trifluoromethane)sulfonamide, was used as the primary column stationary phase for comprehensive two-dimensional gas chromatography (GC × GC). The ionic liquid (IL) column was coupled to a 5% diphenyl/95% dimethyl polysiloxane (HP-5) secondary column. The retention characteristics of the IL column were compared to polyethylene glycol (DB-Wax) and 50% phenyl/50% methyl polysiloxane (HP-50+). A series of homologous compounds that included hydrocarbons, oxygenated organics, and halogenated alkanes were analyzed with each column combination. This comparison showed that the ionic liquid is less polar than DB-Wax but more polar than HP-50+. The most unique feature of the IL × HP-5 column combination is that alkanes, cyclic alkanes, and alkenes eluted in a narrow band in the GC × GC chromatogram; whereas, these compounds occupied a much larger portion of the DB-Wax × HP-5 and the HP-50+ × HP-5 chromatograms. Each column combination was used to analyze diesel fuel. The IL × HP-5 chromatogram displayed narrow bands for three major compound classes in diesel fuel: saturates, monoaromatics, and diaromatics. The IL column was used at temperatures as high as 290 °C for several months without any noticeable changes in column performance.  相似文献   

13.
Murahashi T 《The Analyst》2003,128(6):611-615
A comprehensive two-dimensional HPLC system for the separation of polycyclic aromatic hydrocarbons was developed using a pentabromobenzyl column as the first dimension and two short monolithic C18 columns as the second dimension. The primary column and two secondary columns were coupled by a 10-port 2-position valve. The effluent from the first dimension was repetitively injected into the second dimension every 12 s. Due to its resolution, this technique is a powerful tool for the separation of polycyclic aromatic hydrocarbons in a complex matrix such as environmental samples.  相似文献   

14.
Today scientists must deal with complex samples that either cannot be adequately separated using one-dimensional chromatography or that require an inordinate amount of time for separation. For these cases we need two-dimensional chromatography because it takes far less time to generate a peak capacity n(c) twice in a row than to generate a peak capacity n(c)(2) once. Liquid chromatography has been carried out successfully on thin layers of adsorbents and along tubes filled with various adsorbents. The first type of separation sorts out the sample components in a physical separation space that is the layer of packing material. The analysis time is the same for all the components of the sample while their migration distance increases with decreasing retention. The resolution between two components having a certain separation factor (alpha) increases with increasing migration distance, i.e., from the strongly to the weakly retained compounds. In the second type of separation, the sample components are eluted from the column and separated in the time space, their migration distances are all the same while their retention times increase from the unretained to the strongly retained compounds. Separation efficiency varies little with retention, as long as the components are eluted from the column. We call these two types of separation the chromatographic separations in space (LC(x)) and the chromatographic separations in time (LC(t)), respectively. In principle, there are four ways to combine these two modes and do two-dimensional chromatographic separations, LC(t)xLC(t), LC(x)xLC(t), LC(t)xLC(x), and LC(x)xLC(x). We review, discuss and compare the potential performance of these combinations, their advantages, drawbacks, problems, perspectives and results. Currently, column-based combinations (LC(t)xLC(t)) are the most actively pursued. We suggest that the combination LC(x)xLC(t) shows exceptional promise because it permits the simultaneous second-dimension separations of all the fractions separated in the first-dimension, thus providing remarkable time saving.  相似文献   

15.
Yang X  Zhang X  Li A  Zhu S  Huang Y 《Electrophoresis》2003,24(9):1451-1457
A novel comprehensive two-dimensional (2-D) separation system coupling capillary high-performance liquid chromatography (cHPLC) with microchip electrophoresis (chip CE) is demonstrated. Reversed-phase cHPLC was used as the first dimension, and chip CE acted as the second dimension to perform fast sample transfers and separations. A valve-free gating interface was devised simply by inserting the outlet-end of LC column into the cross-channel on a specially designed chip. A home-made confocal laser-induced fluorescence detector was used to perform on-chip high-sensitive detection. The cHPLC effluents were continuously delivered to the chip and pinched injections of the effluents every 20 seconds were employed for chip CE separation. Gradient elution of cHPLC was carried out to obtain the high-efficiency separation. Free-zone electrophoresis was performed with triethylamine buffer to achieve high-speed separation and prevent sample adsorption. Such a simple-made comprehensive system was proved to be effective. The relative standard deviations for migration time and peak height of rhodamine B in 150 sample transfers were 3.2% and 9.8%, respectively. Peptides of the fluorescein isothiocyanate (FITC)-labeled tryptic digests of bovine serum albumin were fairly resolved and detected with this comprehensive 2-D system.  相似文献   

16.
The design of a new interface for comprehensive two-dimensional liquid chromatography (LC x LC) is described. To the conventionally used LC x LC system with the loop-type interface consisting of a two-position/ten-port switching valve equipped with two loops, an extra two-position/ten-port switching valve, a detector, a pump and a second column placed in parallel with the column in the second dimension, are added. The features of the interface are that the separation space in the second dimension is significantly enlarged and that the number of fractions transferred from the first to the second dimension can be increased, reducing the risk to lose resolution of the primary dimension. The potential of the system in NPLC x 2RPLC is illustrated with the analysis of a standard mixture and a lemon oil extract. For the lemon oil analysis, the effective peak capacity was increased from 437 using a conventional interface to 1095 with the new interface. RPLC x 2RPLC in combination with reduced modulation times was applied to the analysis of steroids and to the detection of impurities at the 0.05% relative concentration level in a sulfonamide drug sample.  相似文献   

17.
An improved modulation system for comprehensive two-dimensional gas chromatography (GC x GC) is presented. It is based on two-jet modulation with liquid nitrogen as cryogen. A valve system was designed to include subsequent re-heating of cooled capillary segments after modulation. It is demonstrated that even volatile components, such as propane or butane, are easily modulated with this system. Thus, the temperature range for GC x GC operation compared to diaphragm valve or liquid CO2 modulation is extended. The system allows highly efficient analysis of volatile and non-volatile components. Applications include separations of alkenes and gasoline samples. Also sulfur-containing hydrocarbon samples were compared via GC x GC and differences among samples of different producers were observed. Finally, headspace GC x GC investigations of volatiles found in polymer latex-coated papers round out the increasing portfolio of valuable applications.  相似文献   

18.
Size exclusion chromatography (SEC), gradient polymer elution chromatography (GPEC) and liquid chromatography at critical conditions (LC-CC) have been developed and applied to observe chemical changes in poly(bisphenol A)carbonate (PC) due to hydrolytic degradation. Especially LC-CC appeared to be very successful to observe differences in functionality of PC as result of hydrolytic degradation. Observed differences due to degradation could be identified by (semi) on-line coupling to matrix assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The differences in functionality could be attributed to the formation of different end-groups, i.e. OH end-groups. In addition, comprehensive two-dimensional liquid chromatography (2D-LC) has been applied successfully to study the hydrolytic degradation of PC. LC-CC x SEC showed that the formation of PC with different end-groups occurred over the whole molecular mass range. This information could not be obtained with the separate liquid chromatographic techniques, thereby illustrating the added value of 2D-LC.  相似文献   

19.
The on-line coupling of comprehensive two-dimensional liquid chromatography (liquid chromatography x size-exclusion chromatography, LC x SEC) and infrared (IR) spectroscopy has been realized by means of an IR flow cell. The system has been assessed by the functional-group analysis of a series of styrene-methylacrylate (SMA) copolymers with varying styrene content. Ultraviolet (UV) detection was used as a detection technique to verify the detection with IR. The LC x SEC-IR functional-group contour plots (comprehensive chromatograms) obtained for styrene were in agreement with the contour plots constructed from the UV signal. In addition, contour plots can be obtained from non-UV-active groups. One such plot, for the carbonyl-stretching vibration of methylacrylate (MA), is shown. Selective detection of MA proved possible using flow cell IR detection. The combination of the contour plots for styrene and MA allowed a full characterization of the copolymer and it was revealed that the present series of SMA copolymers exhibited homogeneous chemical-composition distributions (CCDs). In addition, commercially available fast-SEC columns have been assessed in this study with respect to their potential to serve as second-dimension separation columns.  相似文献   

20.
One of the major objectives in metabolomics is the identification of subtle changes in metabolite profiles as affected by genetic or environmental factors. Comprehensive two-dimensional gas chromatography (GC × GC) hyphenated to a fast-acquisition mass spectrometer is a well-established analytical technique to study the composition of complex samples due to its enhanced separation capacity, sensitivity, peak resolution, and reproducibility. This review reports applications of GC × GC to metabolomics studies of sample of different types (biofluid, cells, tissue, bacteria, yeast, plants), and discusses its advantages and limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号