首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
利用具有三维连续纳米孔结构的热剥离石墨烯为骨架制备Li4Ti5O12/石墨烯纳米复合材料。通过乙醇挥发法在热剥离石墨烯的纳米孔道内引入前驱物, 进一步高温热处理, 在热剥离石墨烯的孔道内原位形成Li4Ti5O12纳米粒子。利用复合材料作为锂离子电池电极材料。电化学反应过程中, 热剥离石墨烯的三维连续结构确保了Li4Ti5O12纳米粒子与石墨烯在长循环过程中的有效接触。因此, 复合材料表现出优异的循环稳定性。在5C下, 5 000次循环后, 其容量保持率高达94%。  相似文献   

2.
以纳米级锐钛矿型二氧化钛(TiO2)和氢氧化锂(LiOH)为原料,利用水热法合成了尖晶石型Li4Ti5O12材料,并研究了LiOH浓度、水热反应时间及热处理温度对Li4Ti5O12样品结构和电化学性能的影响,分析了Li4Ti5O12的形成过程.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)分析样品材料结构,观察材料形貌.结果表明,LiOH浓度0.2 mol.L-1、水热反应时间12 h及煅烧温度700℃可得到纯相尖晶石型Li4Ti5O12,该样品1C倍率放电比容量为146.3 mAh.g-1,40C高倍率其放电比容量仍有101.3 mAh.g-1.  相似文献   

3.
采用流变相法合成了锡掺杂的非整比锂钛氧尖晶石化合物,并研究了不同比例的Sn髧离子掺杂对锂钛氧尖晶石结构及性能的影响。采用XRD、SEM技术对合成材料的晶体结构和微观形貌进行表征,采用恒流充、放电系统及交流阻抗测试法对合成材料的电化学性能进行了测试,结果表明:Sn髧离子掺杂在一定程度上改善了锂钛氧尖晶石作为负极材料时,不同的掺杂量,对材料的电化学性能影响不同,其中Li4-xTi5Sn0·3O12材料的性能为最佳,当电池在较低电流密度下(50 mA·g-1)充、放电时,Li4-xTi5Sn0·3O12材料的首次放电比容量为236 mAh·g-1,在随后提高充、放电倍率过程中(由1C增到4C进行充、放电),当循环105次后,Li4-xTi5Sn0·3O12材料的放电比容量仍保持在109.8 mAh·g-1,与纯样品或其它非整比掺杂样品锂钛氧尖晶石比较,Li4-xTi5Sn0·3O12表现优良的电化学循环性能。本文还对锡掺杂导致锂钛尖晶石材料性能改善的原因也进行了初步探索。  相似文献   

4.
由半固相法制得锂离子电池负极材料Li4Ti5O12,并研究了Li4Ti5O12的碳包覆改性.采用XRD、SEM、TEM以及HRTEM观察和分析产物的相结构与形貌.采用恒流充放电、循环伏安法和交流阻抗技术测试了材料的电化学性质.结果表明,Li4Ti5O12因颗粒团聚电化学性能严重下降,该电极在0.1C和0.5C首周期放电容量分别为121.7和87.6 mAh·g-1;碳包覆Li4Ti5O12/C材料呈球形分布,能抑制颗粒团聚,该电极倍率<0.5C时的放电比容量大于180 mAh·g-1,超过Li4Ti5O12的理论放电比容量(175 mAh·g-1);在1C、5C和10C倍率下,其容量仍保持在136、79.9和58.3 mAh·g-1,碳包覆改性材料具有优异的循环寿命和高倍率性能.  相似文献   

5.
将LiNO3和Ti(OC4H9)4填填充在有序介孔碳CMK-3 孔道中, 然后烧结合成了Li4Ti5O12/CMK-3复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对其结构和微观形貌进行了表征. 利用差热-热重分析(TG-DTA)测试复合材料中Li4Ti5O12的含量. 利用充放电测试、循环伏安和电化学阻抗技术考察了复合材料作为锂离子电池负极材料的性能. 发现Li4Ti5O12分布在CMK-3孔道中及其周围, 复合材料的高倍率充放电性能显著优于商品Li4Ti5O12, 复合材料中Li4Ti5O12的比容量明显高于除去CMK-3的样品(在1C倍率时比容量为117.8 mAh·g-1), 其0.5C、1C和5C倍率的放电比容量分别为160、143 和131 mAh·g-1, 库仑效率接近100%, 5C倍率时循环100次的容量损失率只有0.62%. 本研究结果表明CMK-3明显提高了Li4Ti5O12的高倍率充放电性能, 可能是CMK-3特殊的孔道结构和良好的导电性减小了Li4Ti5O12的粒径并提高了其电导率.  相似文献   

6.
本文通过乙酸锂与二氧化钛反应,采用一步高温固相法在不同反应温度(750 °C/800 °C/850 °C)和反应气氛(氮气/空气)下合成Li4Ti5O12材料. 通过热重分析、X射线衍射、扫描电子显微镜、循环伏安曲线和充放电曲线分析了Li4Ti5O12的晶体结构,观察其微观形貌,并测试其电化学性能. 结果表明,800 °C氮气烧结得到的Li4Ti5O12(L-800N)材料粒径较小,该材料在1.0C倍率下的首周期放电比容量达到170.7 mAh·g-1,100周期循环后的容量保持率高达94.6%,即使是10C高倍率其首周期放电容量依然有143.0 mAh·g-1,表现出了良好的倍率和循环寿命性能.  相似文献   

7.
主要合成了具有尖晶石结构的Li4Ti5O12亚微米球电极材料,并研究了其作为锂离子电池负极材料的电化学性能.材料的制备分为三个步骤:TiCl4水解得到金红石相的TiO2,然后将得到的TiO2与LiOH进行水热反应得到中间相LiTi2O4+δ,最后将中间相高温煅烧得到尖晶石结构的Li4Ti5O12.采用XRD、SEM和TEM等手段对材料的结构和形貌进行表征.结果表明,尖晶石相的Li4Ti5O12负极材料具有分级结构,是由20~30nm的小颗粒堆积成约为200~300nm的亚微米球.将制备的Li4Ti5O12材料进行恒电流充放电测试表明,材料具有优异的倍率放电性能和较好的循环可逆性;在1C充放电时,首次放电比容量达到174.3mAh/g,在第5~50次循环过程中仅有微小的不可逆容量损失.采用循环伏安法测得Li+的扩散系数为1.03×10-7cm2/s.研究表明合成的Li4Ti5O12亚微米球在高效可充电锂离子电池中具有良好的应用前景.  相似文献   

8.
锂离子电池用Li4Ti5O12-碳复合材料的制备与电化学性能   总被引:6,自引:0,他引:6  
Li4Ti5O12-C composite was prepared by sol-gel method using ethyl alcohol as solvent, lithium acetate and tetrabutyl titanate as raw materials, and graphite as carbon source. Li4Ti5O12-C composites were characterized by thermogravimertric(TG) analysis and differential thermal analysis(DTA), X-ray diffraction(XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and electrochemical tests. Results show that Li4Ti5O12-C composite with 5% carbon containing can be obtained by annealing the precursor at 600 ℃ for 6 h in N2 atomsphere. The composites can deliver a specific capacity of 167.1 mAh·g-1, 99.0% and 105.1% of the capacity can be retained after discharged for 80 times at 0.1C and 2.0C, respectively. Compared with pure Li4Ti5O12, Li4Ti5O12-C composite shares larger discharge capacity, better cyclability and rate performance.  相似文献   

9.
采用溶胶凝胶法和还原氧化石墨法制备尖晶石LiMn2O4纳米晶和石墨烯纳米片,并采用冷冻干燥法制备了石墨烯/尖晶石LiMn2O4纳米复合材料,利用XRD、SEM、AFM等对其结构及表面形貌进行表征;利用CV、充放电、EIS研究纳米复合材料的电化学性能和电极过程动力学特征。结果表明:纳米LiMn2O4电极材料及其石墨烯掺杂纳米复合材料的放电比容量分别为107.16 mAh.g-1,124.30 mAh.g-1,循环100周后,对应容量保持率为74.31%和96.66%,石墨烯可显著改善尖晶石LiMn2O4电极材料的电化学性能,归结于其良好的导电性。纳米复合材料EIS上感抗的产生与半导体尖晶石LiMn2O4不均匀地分布在石墨烯膜表面所造成局域浓差有关,并提出了感抗产生的模型。  相似文献   

10.
采用Sb2O3掺杂改性Li4Ti5O12.用恒流充放电、循环伏安和交流阻抗技术对样品的电化学性能进行了测试.结果显示,当Ti:Sb=4:1时,首次放电容量高达595.84mAhog-1,首次的库仑效率为45.7%,存在不可逆容量损失.提出了可能的反应机理,并用该机理解释了影响容量衰减的因素.经过20次充放电循环后,容量保持在249.57 mAhog-1.电化学阻抗谱表明,Sb的掺杂使得电化学反应阻抗减小了.  相似文献   

11.
张欢  其鲁  高学平  杨坤  张鼎 《无机化学学报》2010,26(9):1539-1543
用钛酸纳米管和LiOH溶液进行离子交换法得到了水合钛酸锂前驱体,进而在不同温度热处理制备了Li4Ti5O12。通过X射线衍射(XRD)、扫描电镜(SEM)、热分析(TG-DSC)和恒电流充放电测试对反应产物进行了研究。结果表明所得前驱体在500~700℃热处理可得到纳米结构的纯相Li4Ti5O12。所得Li4Ti5O12的可逆容量约为160mAh·g-1,循环稳定性随热处理温度的提高而增强,并因具有较短的锂离子扩散距离表现出极佳的倍率性能,在1600mA·g-1(约10C)的电流密度下放电下还保持140mAh·g-1的容量。  相似文献   

12.
以乙酰丙酮(ACAC)为螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5Ol2/TiN材料.考察了TiN膜对尖晶石型Li4Ti5Ol2锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5Ol2/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5Ol2锂离子电池负极材料的电化学性能.  相似文献   

13.
A relatively simple galvanostatic method was used for the evaluation on the average chemical diffusion coefficient of lithium-ion in spinel Li4Ti5O12 prepared by solid-state reaction technique. The diffusion coefficient of lithium-ion was estimated to be 2.8×10-13 cm2·s-1 and 1.3×10-13 cm2·s-1 for charge and discharge, respectively.  相似文献   

14.
Li4Ti5O12 nanoparticles were precipitated from ethylene glycol solution of titanium tetra isopropoxide (Ti(O-iPr)4) and Li2O2 by refluxing at 197 °C for 12 h. The obtained particles were filtered and dried at 100 °C for 12 h, and the dried powder samples were heated at 320, 500 and 800 °C for 3 h. The X-ray diffraction patterns of the obtained samples exhibited a good fit with the spinel phase. The field emission-SEM images of the dried powder sample and the samples heated at 320, 500 and 800 °C for 3 h showed a uniform spherical morphology with a particle size of 5, 8, 10 and 400 nm, respectively. According to the results of electrochemical testing, the dried powder sample and the samples heated at 320, 500, and 800 °C for 3 h showed initial capacities of 200, 310, 320, and 260 mA h/g, respectively, at a current density of 0.05 mA/cm2. Nanosized (6–8 nm) particles with good crystallinity were obtained by controlling the synthesis conditions. The sample heated at 500 °C for 3 h exhibited a high capacity and an excellent rate capability over 60 cycles.  相似文献   

15.
为克服Co_3O_4负极材料导电率低、循环稳定性差的缺点,选择Co_2(NDC)_2DMF_2(NDC=1,4-萘二甲酸根)为前驱体采用两步煅烧工艺,制备了具有高碳含量的Co_3O_4/C复合材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和拉曼光谱对样品进行了表征。采用热重分析法(TGA)测定了Co_3O_4/C中非晶态碳的含量。作为锂离子电池的负极材料,Co_3O_4/C具有高的可逆比容量、优异的循环性能(在200 m A·g~(-1)的电流密度下,循环200圈后放电比容量稳定保持在1 000 mAh·g~(-1))和良好的倍率性能(在100、200、500、1 000和2 000 mA·g~(-1)的电流密度下,放电比容量为分别1 076.3、976.2、872.9、783.6和670.1 mAh·g~(-1))。材料优异的电化学性能归结为有机配体衍生的高含量非晶态碳的导电和缓冲作用有利于电子的快速传递并有效减缓了金属氧化物充放电过程中的体积膨胀。  相似文献   

16.
Li4Ti5O12溶胶-凝胶法合成及其机理研究   总被引:15,自引:0,他引:15  
The precursors of Li4Ti5O12 were prepared from tetrabutyl titanate and lithium acetate by sol-gel process. The Li4Ti5O12 samples were synthesized by calcining the gel precursors at 400~900 ℃ in air for 6~20 h. Its reaction mechanism was investigated by infrared spectroscopy(IR), thermogravimetry(TG) and X-ray diffraction(XRD). The effects of sinter-temperature, calcination-time and thermal-treatment for the products were discussed. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM). The results showed that the single-phase products were obtained by calcining the gel precursors at 800 ℃ in air for 20 h, the sinter-temperature was lower than that of solid-state method, the particles were narrowly distributed, well crystallized with a size range from 0.3μm to 0.5 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号