首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using perturbations in the molecular external potential, the authors deduce the Fukui function from the change in Kohn-Sham orbital energies, avoiding the troublesome differentiation of the density with respect to electron number. Though this paper focuses on the Fukui function, the same general technique can be used to compute the functional derivative of any observable with respect to the external potential. In this paper, the method is used to compute the Fukui function for the beryllium atom and the formaldehyde molecule. The follow-up paper (part II) addresses the problem of computing condensed reactivity indicators.  相似文献   

2.
Different procedures to obtain atom condensed Fukui functions are described. It is shown how the resulting values may differ depending on the exact approach to atom condensed Fukui functions. The condensed Fukui function can be computed using either the fragment of molecular response approach or the response of molecular fragment approach. The two approaches are nonequivalent; only the latter approach corresponds in general with a population difference expression. The Mulliken approach does not depend on the approach taken but has some computational drawbacks. The different resulting expressions are tested for a wide set of molecules. In practice one must make seemingly arbitrary choices about how to compute condensed Fukui functions, which suggests questioning the role of these indicators in conceptual density-functional theory.  相似文献   

3.
The Fukui matrix is introduced as the derivative of the one-electron reduced density matrix with respect to a change in the number of electrons under constant external potential. The Fukui matrix extends the Fukui function concept: the diagonal of the Fukui matrix is the Fukui function. Diagonalizing the Fukui matrix gives a set of eigenvectors, the Fukui orbitals, and accompanying eigenvalues. At the level of theory used, there is always one dominant eigenvector, with an eigenvalue equal to 1. The remaining eigenvalues are either zero or come in pairs with eigenvalues of the same magnitude but opposite sign. Analysis of the frontier molecular orbital coefficient in the eigenvector with eigenvalue 1 gives information on the quality of the frontier molecular orbital picture. The occurrence of negative Fukui functions can be easily interpreted in terms of the nodal character of the dominant eigenvector versus the characteristics of the remaining eigenvectors and eigenvalues.  相似文献   

4.
Many useful concepts developed within density functional theory provide much insight for the understanding and prediction of chemical reactivity, one of the main aims in the field of conceptual density functional theory. While approximate evaluations of such concepts exist, the analytical and efficient evaluation is, however, challenging, because such concepts are usually expressed in terms of functional derivatives with respect to the electron density, or partial derivatives with respect to the number of electrons, complicating the connection to the computational variables of the Kohn-Sham one-electron orbitals. Only recently, the analytical expressions for the chemical potential, one of the key concepts, have been derived by Cohen, Mori-Sánchez, and Yang, based on the potential functional theory formalism. In the present work, we obtain the analytical expressions for the real-space linear response function using the coupled perturbed Kohn-Sham and generalized Kohn-Sham equations, and the Fukui functions using the previous analytical expressions for chemical potentials of Cohen, Mori-Sánchez, and Yang. The analytical expressions are exact within the given exchange-correlation functional. They are applicable to all commonly used approximate functionals, such as local density approximation (LDA), generalized gradient approximation (GGA), and hybrid functionals. The analytical expressions obtained here for Fukui function and linear response functions, along with that for the chemical potential by Cohen, Mori-Sánchez, and Yang, provide the rigorous and efficient evaluation of the key quantities in conceptual density functional theory within the computational framework of the Kohn-Sham and generalized Kohn-Sham approaches. Furthermore, the obtained analytical expressions for Fukui functions, in conjunction with the linearity condition of the ground state energy as a function of the fractional charges, also lead to new local conditions on the exact functionals, expressed in terms of the second-order functional derivatives. We implemented the expressions and demonstrate the efficacy with some atomic and molecular calculations, highlighting the importance of relaxation effects.  相似文献   

5.
The Fukui functions based on the computable local polarizability vector have been presented for a group of simple molecules. The necessary approximation for the density functional theory softness kernel has been supported by a theoretical analysis unifying and generalizing early concepts produced by the several authors. The exact relation between local polarizability vector and the derivative of the nonlocal part of the electronic potential over the electric field has been demonstrated. The resulting Fukui functions are unique and represent a reasonable refinement when compared to the classical ones that are calculated as the finite difference of the density in molecular ions. The new Fukui functions are strongly validated by their direct link to electron dipole polarizabilities that are reported experimentally and by other computational methods.  相似文献   

6.
In the course of a reaction it is the shape of the Fukui potential that guides a distant reagent toward the site where an electrophile/nucleophile is willing to accept/donate charge. In this paper we explore the mathematical characteristics of the Fukui potential and demonstrate its relationship to the hardness and the ability of an atom in a molecule to change its charge. The Fukui potential not only determines the active site for electron transfer, but it also approximates the distribution of hardness of a molecule: it is the Coulomb contribution to the frontier local hardness. The Fukui potential at the position of the nuclei is equal to the variation of the chemical potential with the nuclear charge and therefore measures the sensitivity of the system to changes in atom type. In the specific case of atoms and slightly charged ions, the Fukui potential at the nucleus measures the hardness. The strong correlation between the hardness and the Fukui potential at the nucleus suggests that the Fukui potential at the nucleus is an alternative definition for the chemical hardness.  相似文献   

7.
Ab initio and density-functional theory calculations for a family of substituted acetylenes show that removing electrons from these molecules causes the electron density along the C-C bond to increase. This result contradicts the predictions of simple frontier molecular orbital theory, but it is easily explained using the nucleophilic Fukui function-provided that one is willing to allow for the Fukui function to be negative. Negative Fukui functions emerge as key indicators of redox-induced electron rearrangements, where oxidation of an entire molecule (acetylene) leads to reduction of a specific region of the molecule (along the bond axis, between the carbon atoms). Remarkably, further oxidization of these substituted acetylenes (one can remove as many as four electrons!) causes the electron density along the C-C bond to increase even more. This work provides substantial evidence that the molecular Fukui function is sometimes negative and reveals that this is due to orbital relaxation.  相似文献   

8.
9.
Four different ways to condense the Fukui function are compared. Three of them perform a numerical integration over different basins to define the condensed Fukui function, and the other one is the most traditional Fukui function using Mulliken population analysis. The basins are chosen to be the basins of the electron density (AIM), the basins of the electron localization function (ELF), and the basins of the Fukui function itself. The use of the last two basins is new and presented for the first time here. It is found that the last three methods yield results which are stable against a change in the basis set. The condensed Fukui function using the basins of the ELF is not able to give information on the reactivity of an acceptor molecule. In general, the condensed Fukui function using the basins of the density or the basins of the Fukui function describe the reactivity trends well. The latter is preferred, because it only contains information about the Fukui function itself and it gives the right information for donor as well as acceptor centers.  相似文献   

10.
The Fukui function is often used in its atom‐condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms‐in‐molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld‐I atoms‐in‐molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld‐I approach to obtain atom‐ and bond‐condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms‐in‐molecule approach shows low correlation between the two partitioning schemes.  相似文献   

11.
By using a coarse-grain representation of the molecular electronic density, we demonstrate that the value of the condensed Fukui function at an atomic site is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the atom. The link between the formation of an electron-hole pair and the condensed Fukui function provides insights on the possible negativity of the Fukui function which is interpreted in terms of two phenomena: overscreening and over-strengthening.  相似文献   

12.
Fukui matrices considered as the generalization of the concept of Fukui densities are decomposed into their pairing and unpairing contributions within the theory of the reduced density matrices. Their algebraic structure become clear from this decomposition providing their relationships with the spin density matrices and the irreducible part of the second‐order reduced density matrix cumulant, that is, the explicit contributions of the many‐body or correlation effects. The uncorrelated state function approximation is a simple way to emphasize the physical meaning of these matrices and represents the appropriate starting point for the treatment of a quasi‐analytical model to denote the occurrence of correlation effects.  相似文献   

13.
Numerical results for the nuclear Fukui function (NFF) based on a nonintegral number of electrons methodology (NIEM) are reported for a series of simple diatomic molecules. A comparison with those obtained from other methodologies is focused on the estimation of the error associated with a finite difference approximation for the evaluation of the NFF. The dependence of NFFs on the type and size of the basis set is also discussed. The NIEM values are in close agreement with those obtained from a finite difference approximation using ΔN = ±1 with large basis sets. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

14.
The extent of relativistic effects on the Fukui function, which describes local reactivity trends within conceptual density functional theory (DFT), and frontier orbital densities has been analysed on the basis of three benchmark molecules containing the heavy elements: Au, Pb, and Bi. Various approximate relativistic approaches have been tested and compared with the four-component fully relativistic reference. Scalar relativistic effects, as described by the scalar zeroth-order regular approximation methodology and effective core potential calculations, already provide a large part of the relativistic corrections. Inclusion of spin–orbit coupling effects improves the results, especially for the heavy p-block compounds. We thus expect that future conceptual DFT-based reactivity studies on heavy-element molecules can rely on one of the approximate relativistic methodologies.  相似文献   

15.
Multi-scale quantum-mechanical/molecular-mechanical(QM/MM) and large-scale QM simulation provide valuable insight into enzyme mechanism and structure-property relationships. Analysis of the electron density afforded through these methods can enhance our understanding of how the enzyme environment modulates reactivity at the enzyme active site. From this perspective, tools from conceptual density functional theory to interrogate electron densities can provide added insight into enzyme function. We recently introduced the highly parallelizable Fukui shift analysis(FSA) method, which identifies how frontier states of an active site are altered by the presence of an additional QM residue to identify when QM treatment of a residue is essential as a result of quantum-mechanically affecting the behavior of the active site. We now demonstrate and analyze distance and residue dependence of Fukui function shifts in pairs of residues representing different non-covalent interactions. We also show how the interpretation of the Fukui function as a measure of relative nucleophilicity provides insight into enzymes that carry out S_N2 methyl transfer. The FSA method represents a promising approach for the systematic, unbiased determination of quantum mechanical effects in enzymes and for other complex systems that necessitate multi-scale modeling.  相似文献   

16.
The use of Fukui functions for the site selectivity of the formaldehyde molecule for nucleophilic, electrophilic and radical attacks has been made with special emphasis to the dependence of Fukui values on the basis sets as well as population schemes in the framework of B3LYP theory. Out of the five population schemes selected viz., Mulliken population analysis, natural population analysis, CHELP, CHELPG and atoms in molecules (AIM), it is found that the CHELPG and AIM schemes predict precise reactive site with less dependency on the basis sets. Charges derived from Hirshfeld partitioning, calculated using the BLYP/dnd method (implemented in the DMOL3 package), provide non-negative Fukui values for all the molecular systems considered in this study. Supporting results have been obtained for acetaldehyde and acetone molecules at the 6-31+G** basis set level. These results support the fact that high Fukui values correspond to soft–soft interaction sites. On the other hand, the correlation of the low Fukui value to the hard–hard interaction site merits further investigation. Received: 10 November 2001 / Accepted: 6 March 2002 / Published online: 13 June 2002  相似文献   

17.
The analysis of previously reported shortcomings of the condensed Fukui functions obtained making use of the quantum theory of atoms in molecules indicates these drawbacks are due to the inadequacy of the definition employed to compute them and not to the partitioning. A new procedure, which respects the mathematical definition and solves these problems, is presented for the calculation of condensed Fukui functions for atomic basins defined according to the quantum theory of atoms in molecules. It is tested in a set of 18 molecules, which includes the most controversial reported cases.  相似文献   

18.
The Fukui function is considered as the diagonal element of the Fukui matrix in position space, where the Fukui matrix is the derivative of the one particle density matrix (1DM) with respect to the number of electrons. Diagonalization of the Fukui matrix, expressed in an orthogonal orbital basis, explains why regions in space with negative Fukui functions exist. Using a test set of molecules, electron correlation is found to have a remarkable effect on the eigenvalues of the Fukui matrix. The Fukui matrices at the independent electron model level are mathematically proven to always have an eigenvalue equal to exactly unity while the rest of the eigenvalues possibly differ from zero but sum to zero. The loss of idempotency of the 1DM at correlated levels of theory causes the loss of these properties. The influence of electron correlation is examined in detail and the frontier molecular orbital concept is extended to correlated levels of theory by defining it as the eigenvector of the Fukui matrix with the largest eigenvalue. The effect of degeneracy on the Fukui matrix is examined in detail, revealing that this is another way by which the unity eigenvalue and perfect pairing of eigenvalues can disappear.  相似文献   

19.
The present article is a direct continuation of part IV of this series. The Local Analyticity Proposition (LAP1), which admits a proof via resolution of singularities is a major key to proving the Fukui conjecture via resolution of singularities and related methods. By LAP1, the essential part of the mechanism of the “asymptotic linearity phenomena” is extracted and is elucidated by using tools from the theory of algebraic and analytic curves. Here in the present article, we complete the proof of the LAP1 by using fundamental tools developed in parts III and IV of this series, thus completing the proof of the Fukui conjecture via resolution of singularities and related methods. This series of articles I-V establishes, for the first time, a new linkage between (i) the mathematical field of resolution of singularities and (ii) the chemical field of additivity problems tackled and solved in a unifying manner via the repeat space theory (RST), which is the central theory in the First and Second Generation Fukui Project. A new development called the Matrix Art Program in the Second Generation Fukui Project has also been expounded with a graphical representation of energy band curves of a carbon nanotube.  相似文献   

20.
A new condensed form of the Fukui function, the natural orbital Fukui function (NOFF), is proposed and derived from natural bond orbital occupancy. It is defined as the change in natural bond orbital occupancy upon electronic perturbation (electron addition to, or depletion from, a molecular system). Applying NOFF to a series of cycloaddition reactions (e.g., [4 + 2] and [2 + 1] cycloadditions) illustrates the effectiveness of the concept in interpreting bond breakage and formation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号