首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present here a tractable theory of transport of simple fluids in cylindrical nanopores, which is applicable over a wide range of densities and pore sizes. In the Henry law low-density region the theory considers the trajectories of molecules oscillating between diffuse wall collisions, while at higher densities beyond this region the contribution from viscous flow becomes significant and is included through our recent approach utilizing a local average density model. The model is validated by means of equilibrium as well nonequilibrium molecular dynamics simulations of supercritical methane transport in cylindrical silica pores over a wide range of temperature, density, and pore size. The model for the Henry law region is exact and found to yield an excellent match with simulations at all conditions, including the single-file region of very small pore size where it is shown to provide the density-independent collective transport coefficient. It is also shown that in the absence of dispersive interactions the model reduces to the classical Knudsen result, but in the presence of such interactions the latter model drastically overpredicts the transport coefficient. For larger micropores beyond the single-file region the transport coefficient is reduced at high density because of intermolecular interactions and hindrance to particle crossings leading to a large decrease in surface slip that is not well represented by the model. However, for mesopores the transport coefficient increases monotonically with density, over the range studied, and is very well predicted by the theory, though at very high density the contribution from surface slip is slightly overpredicted. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores, and the apparent activation energy is not simply related to the minimum pore potential or the adsorption energy as generally assumed.  相似文献   

2.
A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.  相似文献   

3.
We study adsorption in pores with curved hard walls that are made of two uniaxial cylinders by using a density functional approach. Two cases are considered: adsorption of hard spheres and adsorption of a Lennard-Jones fluid. In the case of hard spheres, we perform a comparison with the results of grand canonical ensemble Monte Carlo data. This comparison indicates that the applied approach is capable of reproducing the fluid structure quite satisfactorily. For hard spheres, we also make a comparison of the total adsorption effect (expressed as the average density of a confined fluid) inside pores with curved walls with that evaluated for a slitlike pore. We have found that the differences between adsorption in pores with curved walls and in slits with the same wall-to-wall distance are quite low. The calculations for the Lennard-Jones fluid have been concerned with the investigation of the capillary evaporation and with the evaluation of phase diagrams for different pores, including slitlike pores. We have found that the curvature of the pore walls shifts the transition toward lower values of the chemical potential and increases slightly the value of the critical temperature in comparison with the values obtained for a slitlike pore. Copyright 2000 Academic Press.  相似文献   

4.
When a fluid that undergoes a vapor to liquid transition in the bulk is confined to a long cylindrical pore, the phase transition is shifted (mostly due to surface effects at the walls of the pore) and rounded (due to finite size effects). The nature of the phase coexistence at the transition depends on the length of the pore: for very long pores, the system is axially homogeneous at low temperatures. At the chemical potential where the transition takes place, fluctuations occur between vapor- and liquidlike states of the cylinder as a whole. At somewhat higher temperatures (but still far below bulk criticality), the system at phase coexistence is in an axially inhomogeneous multidomain state, where long cylindrical liquid- and vaporlike domains alternate. Using Monte Carlo simulations for the Ising/lattice gas model and the Asakura-Oosawa model of colloid-polymer mixtures, the transition between these two different scenarios is characterized. It is shown that the density distribution changes gradually from a double-peak structure to a triple-peak shape, and the correlation length in the axial direction (measuring the equilibrium domain length) becomes much smaller than the cylinder length. The (rounded) transition to the disordered phase of the fluid occurs when the axial correlation length has decreased to a value comparable to the cylinder diameter. It is also suggested that adsorption hysteresis vanishes when the transition from the simple domain state to the multidomain state of the cylindrical pore occurs. We predict that the difference between the pore critical temperature and the hysteresis critical temperature should increase logarithmically with the length of the pore.  相似文献   

5.
The molecular theory of the transport of pure substances and mixtures of molecules of different shapes in narrow slit-like pores, in which the potential of surface forces creates a strongly anisotropic distribution of molecules across pores and thereby makes the hydrodynamics equation inapplicable, is considered. The new microhydrodynamic approach is based on the lattice gas model, which takes into account the intrinsic volume of molecules and intermolecular interactions in the quasi-chemical approximation. Self-consistent calculations of dissipative coefficients taking nonlocal fluid properties into account were performed on the basis of the transition state model including information about equilibrium adsorbate distribution. Changes in fluid concentrations from the gaseous to liquid state and a broad temperature range, including the critical region, are analyzed. This allows vapor, liquid, and vapor-liquid fluid flows to be considered in the presence of capillary condensation. An increase in the size of pores transforms the equations of the theory into hydrodynamic transfer equations for gas or liquid flows, while preserving the relation of transfer coefficients to intermolecular potentials. The use of microhydrodynamic approach equations in numerical calculations and the possibility of applying this approach are discussed.  相似文献   

6.
We use a local density functional theory in the square gradient approximation to explore the properties of critical nuclei for the liquid-vapor transition of van der Waals fluids in cylindrical capillaries. The proposed model allows us to investigate the effect of pore size, surface field, and supersaturation on the behavior of the system. Our calculations predict the existence of at least three different pathways for the nucleation of droplets and bubbles in these confined fluids: axisymmetric annular bumps and lenses, and asymmetric droplets. The morphological transition between these different structures is driven by the existence of states of zero compressibility in the capillary. We show that the classical capillarity theory provides surprisingly accurate predictions for the work of formation of critical nuclei in cylindrical pores when line tension contributions to the free energy are taken into account.  相似文献   

7.
We use the density functional theory of statistical mechanics in a square gradient approximation to analyze the structure, size, and work of formation of critical nuclei in self-associating fluids where association reduces the strength of the interactions between bonded particles. This effect is expected in systems of strongly dipolar particles that associate into chains. In this work we analyze the nucleation behavior of two types of self-associating fluids: a system comprised of particles that can freely associate, and a system in which the association process involves a thermally activated initiation step. For the first case, we explore the properties of critical nuclei in fluids that exhibit a metastable critical point between a vapor phase and a highly associated liquid phase. In fluids where the association dynamics involves an initiation step, we investigate the nucleation behavior in the vicinity of the polymerization transition. In both cases critical nuclei undergo a structural transition that shares many of the features of the coil-globule transition reported in Monte Carlo simulations of strongly dipolar Stockmayer fluids. Our results suggest that the sharp structural transition observed in these simulations is evidence of the existence of a second-order or nearly second-order association transition in these model fluids.  相似文献   

8.
We have employed the density functional theory formalism to investigate the nematic-isotropic capillary transitions of a nematogen confined by walls that favor antagonist orientations to the liquid crystal molecules (hybrid cell). We analyze the behavior of the capillary transition as a function of the fluid-substrate interactions and the pore width. In addition to the usual capillary transition between isotropiclike to nematiclike states, we find that this transition can be suppressed when one substrate is wet by the isotropic phase and the other by the nematic phase. Under this condition the system presents interfacelike states which allow us to continuously transform the nematiclike phase to the isotropiclike phase without undergoing a sharp phase transition. Two different mechanisms for the disappearance of the capillary transition are identified. When the director of the nematiclike state is homogeneously planar-anchored with respect to the substrates, the capillary transition ends up in a critical point. This scenario is analogous to the observed in Ising models when confined in slit pores with opposing surface fields which have critical wetting transitions. When the nematiclike state has a linearly distorted director field, the capillary transition continuously transforms in a transition between two nematiclike states.  相似文献   

9.
We consider the mean field kinetic equations describing the relaxation dynamics of a lattice model of a fluid confined in a porous material. The dynamical theory embodied in these equations can be viewed as a mean field approximation to a Kawasaki dynamics Monte Carlo simulation of the system, as a theory of diffusion, or as a dynamical density functional theory. The solutions of the kinetic equations for long times coincide with the solutions of the static mean field equations for the inhomogeneous lattice gas. The approach is applied to a lattice gas model of a fluid confined in a finite length slit pore open at both ends and is in contact with the bulk fluid at a temperature where capillary condensation and hysteresis occur. The states emerging dynamically during irreversible changes in the chemical potential are compared with those obtained from the static mean field equations for states associated with a quasistatic progression up and down the adsorption/desorption isotherm. In the capillary transition region, the dynamics involves the appearance of undulates (adsorption) and liquid bridges (adsorption and desorption) which are unstable in the static mean field theory in the grand ensemble for the open pore but which are stable in the static mean field theory in the canonical ensemble for an infinite pore.  相似文献   

10.
The behavior of nematic liquid crystal (LC) Merck Phase 4 confined to controlled pore glass (CPG) materials was investigated using 129Xe nuclear magnetic resonance (NMR) spectroscopy of xenon gas dissolved in the LC. The average pore diameters of the materials varied from 81 to 2917 A, and the measurements were carried out within a wide temperature range (approximately 185-370 K). The spectra contain lots of information about the effect of confinement on the phase of the LC. The theoretical model of shielding of noble gases dissolved in liquid crystals on the basis of pairwise additivity approximation was applied to the analysis of the spectra. When pore diameter is small, smaller than approximately 150 A, xenon experiences on average an isotropic environment inside the pore, and no nematic-isotropic phase transition is observed. When the size is larger than approximately 150 A, nematic phase is observed, and the LC molecules are oriented along pore axis. The orientational order parameter of the LC, S, increases with increasing pore size. In the largest pores, the orientation of the molecules deviates from the pore axis direction to magnetic field direction, which implies that the size of the pores (approximately 3000 A) is close to magnetic coherence length. The decrease of magnetic coherence length with increasing temperature is clearly seen from the spectra. When the sample is cooled rapidly by immersing it in liquid nitrogen, xenon atoms do not squeeze out from the solid, as they do during gradual freezing, but they are occluded inside the solid lattice, and their chemical shift is very sensitive to crystal structure. This makes it possible to study the effect of confinement on the solid phases. According to the measured 129Xe NMR spectra, possibly three different solid phases are observed from bulk liquid crystal in the used temperature region. The same is also seen from the samples containing larger pores (pore size larger than approximately 500 A), and the solid-solid phase-transition temperatures are the same. However, no first-order solid-solid phase transitions are observed from the smaller pores. Melting point depression, that is, the depression of solid-nematic transition temperature observed from the pores as compared with that in bulk LC, is seen to be very sensitive to the pore size, and it can be used for the determination of pore size of an unknown material.  相似文献   

11.
A model is introduced to investigate the transport properties of an inhomogeneously dense flexible chain particle. The specific model used is a sedimenting non-neutrally buoyant inhomogenously weighted flexible Brownian dumbbell, and it is shown that density inhomogeneity gives rise to a novel coupling effect between the "shape-fluctuation" and "size-fluctuation" dispersion mechanisms. The previously reported shape-fluctuation dispersion term stems from the dumbbell's nonspherical shape and the ensuing anisotropic mobility tensor, while the already investigated size fluctuation term is the result of the dependence of the overall dumbbell translational mobility on the separation distance between the constitutive spheres. Because the density of the constitutive spheres is unequal, the external force simultaneously reorients and deforms the flexible dumbbell, and it is this mutual dependence between dumbbell orientation and size that induces the coupling. Numerical results are presented for the case of a tethered dumbbell composed of two spheres, identical in size but differing in density. The "weak-field" limit is addressed, where the externally applied torque and particle deformation forces are dominated by the thermal fluctuations associated with rotational and deformation Brownian motion. This numerical solution, obtained by including a large number of higher order hydrodynamic interactions (120 terms), describes the Brownian particle's long-time transport without resorting to ad hoc approximations, such as preaveraging the hydrodynamic force or incorporating only first-order hydrodynamic interaction effects (such as employing the Burgers-Oseen tensor). Separate analytical solutions, based on these respective approximations, are also presented and it is concluded that in the limit of "long tethers," where the ratio of tether length to sphere size is greater than seven, no more than 15% error is introduced by neglecting higher-order hydrodynamic interactions. Similarly, the preaveraging approximation introduces no more than a few percent error in the limit of "almost-rigid" dumbbells, where the ratio of tether length to sphere size is less than three. For tethers of "intermediate" length, the full numerical solution must be employed.  相似文献   

12.
We present a theoretical study of the deformation of mesoporous solids during adsorption. The proposed thermodynamic model allows one to link the mechanical stress and strain to the solvation pressure exerted by the adsorbed molecules on the pore wall. Two approaches are employed for calculation of solvation pressure as a function of adsorbate pressure: the macroscopic Derjaguin-Broekhoff-de Boer theory of capillary condensation, and the microscopic density functional theory. We revealed that the macroscopic and microscopic theories are in quantitative agreement for the pores >8 nm diameter within the whole range of adsorbate pressures. For smaller pores, the macroscopic theory gradually deteriorates, and the density functional theory extends the thermodynamic model of adsorption-induced deformation to the nanometer scales.  相似文献   

13.
We have studied the microscopic structure, thermodynamics of adsorption, and phase behavior of Lennard-Jones fluid in slitlike pores with walls modified due to preadsorption of chain molecules. The chain species are grafted at the walls by terminating segments. Our theoretical considerations are based on a density functional approach in the semigrand canonical ensemble. The applied constraint refers to the constant number of grafted chain molecules in the pore without restriction of the number of chains at each of the walls. We have observed capillary condensation of Lennard-Jones fluid combined with the change of the distribution of chains from nonsymmetric to symmetric with respect to the pore walls. The phase diagrams of the model are analyzed in detail, dependent on the pore width, length of chains, and grafted density.  相似文献   

14.
15.
Using a density functional method we study how the correlations between particles adsorbed in neighboring pores, forming a network of slit-like pores, influence the capillary condensation and the structure of adsorbed Lennard-Jones fluid. The calculations indicate that if the distance between two pores is small enough, these correlations lead to pronounced changes in the density profiles, to an increase of the critical temperature, and to the modifications in the coexistence envelope. Copyright 2000 Academic Press.  相似文献   

16.
Using grand canonical Monte Carlo (GCMC) simulations of molecular models, we investigate the nature of water adsorption and desorption in slit pores with graphitelike surfaces. Special emphasis is placed on the question of whether water exhibits capillary condensation (i.e., condensation when the external pressure is below the bulk vapor pressure). Three models of water have been considered. These are the SPC and SPC/E models and a model where the hydrogen bonding is described by tetrahedrally coordinated square-well association sites. The water-carbon interaction was described by the Steele 10-4-3 potential. In addition to determining adsorption/desorption isotherms, we also locate the states where vapor-liquid equilibrium occurs for both the bulk and confined states of the models. We find that for wider pores (widths >1 nm), condensation does not occur in the GCMC simulations until the pressure is higher than the bulk vapor pressure, P0. This is consistent with a physical picture where a lack of hydrogen bonding with the graphite surface destabilizes dense water phases relative to the bulk. For narrow pores where the slit width is comparable to the molecular diameter, strong dispersion interactions with both carbon surfaces can stabilize dense water phases relative to the bulk so that pore condensation can occur for P < P0 in some cases. For the narrowest pores studied--a pore width of 0.6 nm--pore condensation is again shifted to P > P0. The phase-equilibrium calculations indicate vapor-liquid coexistence in the slit pores for P < P0 for all but the narrowest pores. We discuss the implications of our results for interpreting water adsorption/desorption isotherms in porous carbons.  相似文献   

17.
A field theoretic variational approach is introduced to study ion penetration into water-filled cylindrical nanopores in equilibrium with a bulk reservoir [S. Buyukdagli, M. Manghi, and J. Palmeri, Phys. Rev. Lett. 105, 158103 (2010)]. It is shown that an ion located in a neutral pore undergoes two opposing mechanisms: (i) a deformation of its surrounding ionic cloud of opposite charge, with respect to the reservoir, which increases the surface tension and tends to exclude ions from the pore, and (ii) an attractive contribution to the ion self-energy due to the increased screening with ion penetration of the repulsive image forces associated with the dielectric jump between the solvent and the pore wall. For pore radii around 1 nm and bulk concentrations lower than 0.2 mol/l, this mechanism leads to a first-order phase transition, similar to capillary "evaporation," from an ionic-penetration state to an ionic-exclusion state. The discontinuous phase transition exists within the biological concentration range (~0.15 mol/l) for small enough membrane dielectric constants (ε(m) < 5). In the case of a weakly charged pore, counterion penetration exhibits a nonmonotonic behavior and is characterized by two regimes: at low reservoir concentrations or small pore radii, coions are excluded and counterions enter the pore to enforce electroneutrality; dielectric repulsion (image forces) remain strong and the counterion partition coefficient decreases with increasing reservoir concentration up to a characteristic value. For larger reservoir concentrations, image forces are screened and the partition coefficient of counterions increases with the reservoir concentration, as in the neutral pore case. Large surface charge densities (>2 × 10(-3) e/nm(2)) suppress the discontinuous transition by reducing the energy barrier for ion penetration and shifting the critical point toward very small pore sizes and reservoir concentrations. Our variational method is also compared to a previous self-consistent approach and yields important quantitative corrections. The role of the curvature of dielectric interfaces is highlighted by comparing ionic penetration into slit and cylindrical pores. Finally, a charge regulation model is introduced in order to explain the key effect of pH on ionic exclusion and explain the origin of observed time-dependent nanopore electric conductivity fluctuations and their correlation with those of the pore surface charge.  相似文献   

18.
A fluid of hard spherocylinders of length-to-breadth ratio L/D=5 confined between two identical planar, parallel walls--forming a pore of slit geometry--has been studied using a version of the Onsager density-functional theory. The walls impose an exclusion boundary condition over the particle's centers of mass, while at the same time favoring a particular anchoring at the walls, either parallel or perpendicular to the substrate. We observe the occurrence of a capillary transition, i.e., a phase transition associated with the formation of a nematic film inside the pore at a chemical potential different from micro(b)-the chemical potential at the bulk isotropic-nematic transition. This transition terminates at an Ising-type surface critical point. In line with previous studies based on the macroscopic Kelvin equation and the mesoscopic Landau-de Gennes approach, our microscopic model indicates that the capillary transition is greatly affected by the wetting and anchoring properties of the semi-infinite system, i.e., when the fluid is in contact with a single wall or, equivalently, the walls are at a very large distance. Specifically, in a situation where the walls are preferentially wetted by the nematic phase in the semi-infinite system, one has the standard scenario with the capillary transition taking place at chemical potentials less than micro(b) (capillary nematization transition or capillary ordering transition). By contrast, if the walls tend to orientationally disorder the fluid, the capillary transition may occur at chemical potentials larger than micro(b), in what may be called a capillary isotropization transition or capillary disordering transition. Moreover, the anchoring transition that occurs in the semi-infinite system may affect very decisively the confinement properties of the liquid crystal and the capillary transitions may become considerably more complicated.  相似文献   

19.
We investigate the capillary condensation of two model fluid mixtures in slit-like pores, which exhibit different demixing properties in the bulk phase. The interactions between adsorbate particles are modeled by using Lennard-Jones (12,6) potentials and the adsorbing potentials are of the Lennard-Jones (9,3) type. The calculations are performed for different pore widths and at different concentrations of the bulk gas, by means of density functional theory. We evaluate the capillary phase diagrams and discuss their dependence on the parameters of the model. Our calculations indicate that a binary mixture confined to a slit-like pore may exhibit rich phase behavior.  相似文献   

20.
The effects of bond angle and chain stiffness on the structures of semiflexible polyatomic fluids are investigated by incorporating the bending potential into a density functional theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 2368 (2002)] that combines a modified fundamental measure theory for the excluded-volume effects and the first-order thermodynamics perturbation theory for the chain connectivity. The refined density functional theory faithfully reproduces the density profiles and conformational properties of a variety of triatomic fluids near a hard wall in which extensive Monte Carlo simulation data are available. In particular, the theory is able to capture the structures of rigid cyclic trimers where all segments are identical. The variation of local density profiles with respect to the chain length of confined polyatomic fluids is also explored. For quadratomic fluids confined in slit pores, the density profile of the middle segments exhibits novel double peaks that are absent in a fully flexible chain model. In addition, the density functional theory is applied to predicting the conformational properties and adsorption behavior of heterogeneous triatomic fluids of type "ABB" mimicking surfactant molecules. The competition between surface adsorption and self-association of trimers consisting of surface active and self-binding "A" segments and neutral "B" segment is explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号