首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We provide a consistent treatment of the known solid-state phases of mercury to high pressure to determine the phase changes at 0 K by using the local density approximation (LDA). We obtain good agreement with experimental measurements demonstrating that LDA performs well in the repulsive region of the inter-atomic interaction. The known ??-, ??-, ??-, and ??-phases of mercury differ energetically by no more than 0.04?eV and therefore provide a challenge to future high accuracy calculations using either wavefunction or density functional-based approximations.  相似文献   

2.
Employing an iterative method in functional theory, the electrical potential distribution for the case of a cylindrical surface is solved. Although the analytical result derived is of an iterative nature, the second-order solution is found to be sufficiently accurate under conditions of practical significance. For the case of constant surface potential, the radius and the surface potential of a cylindrical surface can be estimated based on the extreme of the electrical potential distribution. The effects of the key parameters, including the number and the valence of the ions on a surface, the length of a particle, the relative permittivity of the liquid phase, the temperature, and the concentration of electrolyte on the surface potential, are examined. The general behavior of these effects is similar to that for a spherical surface, except that the surface potential of a cylindrical surface is independent of the electrolyte concentration. The present approach is also applicable to the case where a cylindrical surface remains at a constant charge density.  相似文献   

3.
Density functional methods of statistical mechanics are applied to calculate the average density profiles and free energies of small (50–500 particles) liquid clusters in unstable or metastable equilibrium with respect to the vapor. The results are compared with those obtained from experiments on homogeneous nucleation of liquids from the vapor.  相似文献   

4.
Using fundamental measures' density functional framework based on Wertheim's first order perturbation theory [J. Chem. Phys. 87, 7323 (1987)] we study the surface phase transitions in athermal polymer-needle mixtures, which demix in bulk into the isotropic polymer-rich (rod-poor) and polymer-poor (rod-rich) phases. We find that the polymer-rich (rod-poor) phase wets the hard wall at coexistence and the wetting transition is of first order. In the partial wetting regime we find a sequence of layerings but these transitions are gradually suppressed as the chain length increases. For long enough chains we detect the prewetting line. Rods exhibit pronounced ordering at the wall in the polymer-rich phases. Our results imply that experiments on the (isotropic) wetting transition for colloidal rod-polymer mixtures should be easier to carry out than those for the colloidal rod-sphere mixtures because the wetting transition occurs at lower rod densities. On the other hand, layerings in sphere-needle mixtures may turn out to be difficult to observe experimentally because some of them will be metastable with respect to the freezing transition, whereas the remaining ones are located very close to the binodal.  相似文献   

5.
The photoisomerization process of 1,2-diphenylethylene (stilbene) is investigated using the spin-flip density functional theory (SFDFT), which has recently been shown to be a promising approach for locating conical intersection (CI) points (Minezawa, N.; Gordon, M. S. J. Phys. Chem. A2009, 113, 12749). The SFDFT method gives valuable insight into twisted stilbene to which the linear response time-dependent DFT approach cannot be applied. In contrast to the previous SFDFT study of ethylene, a distinct twisted minimum is found for stilbene. The optimized structure has a sizable pyramidalization angle and strong ionic character, indicating that a purely twisted geometry is not a true minimum. In addition, the SFDFT approach can successfully locate two CI points: the twisted-pyramidalized CI that is similar to the ethylene counterpart and another CI that possibly lies on the cyclization pathway of cis-stilbene. The mechanisms of the cis--trans isomerization reaction are discussed on the basis of the two-dimensional potential energy surface along the twisting and pyramidalization angles.  相似文献   

6.
Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.  相似文献   

7.
The structure of polymer solutions confined between surfaces is studied using a density functional theory where the polymer molecules have been modeled as a pearl necklace of freely jointed hard spheres and the solvent as hard spheres. The present theory uses the concept of universality of the free energy density functional to obtain the first-order direct correlation function of the nonuniform system from that of the corresponding uniform system, calculated through the Verlet-modified type bridge function. The uniform bulk fluid direct correlation function required as input has been calculated from the reference interaction site model integral equation theory using the Percus-Yevick closure relation. The calculated results on the density profiles of the polymer as well as the solvent are shown to compare well with computer simulation results.  相似文献   

8.
A theoretical model is developed to describe the intramolecular transfer in organic mixed-valence systems. It is applied to rationalize the intervalence charge-transfer transitions in triarylamine mixed-valence compounds. The electronic coupling parameter is evaluated at the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) levels. The shapes of the charge-transfer absorption bands are analyzed in the framework of a dynamic vibronic model. The influence on the optical properties of diagonal and nondiagonal vibronic couplings is discussed. Our results are compared to recent experimental data.  相似文献   

9.
The effect of surface roughness of slit-like pore walls on the capillary condensation of a spherical particles and short chains is studied. The gas molecules interact with the substrate by a Lennard-Jones (9,3) potential. The rough layer at each pore wall has a variable thickness and density and consists of a disordered quenched matrix of spherical particles. The system is described in the framework of a density functional approach and using computer simulations. The contribution due to attractive van der Waals interactions between adsorbate molecules is described by using first-order mean spherical approximation and mean-field approximation.  相似文献   

10.
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.  相似文献   

11.
A density functional theory is presented for the structure of spherical electric double layers within the restricted primitive model, where the macroion is considered as a hard sphere having uniform surface charge density, the small ions as charged hard spheres, and the solvent is taken as a dielectric continuum. The theory is partially perturbative as the hard-sphere contribution to the one-particle correlation function is evaluated using suitably averaged weighted density and the ionic part is obtained through a second-order functional Taylor expansion around the uniform fluid. The theory is in quantitative agreement with Monte Carlo simulation for the density profiles and the zeta potentials over a wide range of macroion sizes and electrolyte concentrations. The theory is able to provide interesting insights about the layering and the charge inversion phenomena occurring at the interface.  相似文献   

12.
A subsystem formulation of time-dependent density functional theory (TDDFT) within the frozen-density embedding (FDE) framework and its practical implementation are presented, based on the formal TDDFT generalization of the FDE approach by Casida and Wesolowski [Int. J. Quantum Chem. 96, 577 (2004)]. It is shown how couplings between electronic transitions on different subsystems can be seamlessly incorporated into the formalism to overcome some of the shortcomings of the approximate TDDFT-FDE approach in use so far, which was only applicable for local subsystem excitations. In contrast to that, the approach presented here allows to include couplings between excitations on different subsystems, which become very important in aggregates composed of several similar chromophores, e.g., in biological or biomimetic light-harvesting systems. A connection to Forster- and Dexter-type excitation energy coupling expressions is established. A hybrid approach is presented and tested, in which excitation energy couplings are selectively included between different chromophore fragments, but neglected for inactive parts of the environment. It is furthermore demonstrated that the coupled TDDFT-FDE approach can cure the inability of the uncoupled FDE approach to describe induced circular dichroism in dimeric chromophores, a feature known as a "couplet," which is also related to couplings between (nearly) degenerate electronic transitions.  相似文献   

13.
Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.  相似文献   

14.
We present a systematic study on the excited electron-bubble states in superfluid (4)He using a time-dependent density functional approach. For the evolution of the 1P bubble state, two different functionals accompanied with two different time-development schemes are used, namely an accurate finite-range functional for helium with an adiabatic approximation for electron versus an efficient zero-range functional for helium with a real-time evolution for electron. We make a detailed comparison between the quantitative results obtained from the two methods, which allow us to employ with confidence the optimal method for suitable problems. Based on this knowledge, we use the finite-range functional to calculate the time-resolved absorption spectrum of the 1P bubble, which in principle can be experimentally determined, and we use the zero-range functional to real-time evolve the 2P bubble for several hundreds of picoseconds, which is theoretically interesting due to the break down of adiabaticity for this state. Our results discard the physical realization of relaxed, metastable configurations above the 1P state.  相似文献   

15.
We present a method to calculate both on- and off-resonance vibrational Raman optical activities (VROAs) of molecules using time-dependent density functional theory. This is an extension of a method to calculate the normal VROA by including a finite lifetime of the electronic excited states in all calculated properties. The method is based on a short-time approximation to Raman scattering and is, in the off-resonance case, identical to the standard theory of Placzek. The normal and resonance VROA spectra are calculated from geometric derivatives of the different generalized polarizabilites obtained using linear response theory which includes a damping term to account for the finite lifetime. Gauge-origin independent results for normal VROA have been ensured using either the modified-velocity gauge or gauge-included atomic orbitals. For the resonance VROA only the modified-velocity gauge has been implemented. We present some initial results for H(2)O(2) and (S)-methyloxirane and compare with predictions from a simple two-state approximation.  相似文献   

16.
The solvation forces between two planar charged surfaces in ionic solutions, corresponding to charged and neutral hard spheres representing the ions and the solvent, respectively, are studied here using a weighted density functional theory for inhomogeneous Coulomb systems developed by us recently. The hard sphere contributions to the one-particle correlation function are evaluated nonperturbatively using a position-dependent effective density, while the electrical contributions are obtained through a perturbative expansion around this weighted density. The calculated results on the solvation forces between two charged hard walls compare well with available simulation results for ionic systems. For a neutral system, the present results show good agreement with the experimentally observed oscillating forces for two mica surfaces in octamethylcyclotetrasiloxane. The present approach thus provides a direct route to the calculation of interaction energies between colloidal particles.  相似文献   

17.
The chemical Hamiltonian approach (CHA) for handling the basis set superposition error problem in intermolecular interactions has been implemented within density functional theory (DFT) using Gaussian atomic basis sets. As test examples, the potential curves of the water dimer were calculated using the Vosko-Wilk-Nusair, Becke-Perdew and Perdew exchange-correlation functionals. Comparisons with the counterpoise correction method show that CHA within DFT performs as well as previously for Hartree-Fock.  相似文献   

18.
We present a computational method to calculate the electronic states of a molecule in an electrochemical environment. The method is based on our recently developed finite-temperature density functional theory approach to calculate the electronic structures at a constant chemical potential. A solvent effect is treated at the level of the extended self-consistent reaction field model, which allows considering a nonequilibrium solvation effect. An exchange-correlation functional with a long-range correction is employed in this calculation, because the functional is adjusted so that the derivative discontinuity of energy with respect to a number of electrons could be satisfied. It has been found that the derivative discontinuity condition plays a crucial role in an electrochemical system. The computational results are presented for a reaction of NO(+) + e(-) <==> NO in chemical equilibrium. Owing to the improvement in the solvation effect and the exchange-correlation functional, the calculated activation free energy is in good agreement with experimental results.  相似文献   

19.
In this paper, we applied a version of the nonlocal density functional theory (NLDFT) accounting radial and longitudinal density distributions to study the adsorption and desorption of argon in finite as well as infinite cylindrical nanopores at 87.3 K. Features that have not been observed before with one-dimensional NLDFT are observed in the analysis of an inhomogeneous fluid along the axis of a finite cylindrical pore using the two-dimensional version of the NLDFT. The phase transition in pore is not strictly vapor-liquid transition as assumed and observed in the conventional version, but rather it exhibits a much elaborated feature with phase transition being complicated by the formation of solid phase. Depending on the pore size, there are more than one phase transition in the adsorption-desorption isotherm. The solid formation in finite pore has been found to be initiated by the presence of the meniscus. Details of the analysis of the extended version of NLDFT will be discussed in the paper.  相似文献   

20.
A microscopic density functional theory is used to investigate the adsorption of short chains on attractive solid surfaces. We analyze the structure of the adsorbed fluid and investigate how the wetting transition changes with the change of the chain length and with the relative strength of the fluid-solid interaction. End segments adsorb preferentially in the first adsorbed layer whereas the concentration of the middle segments is enhanced in the second layer. We observe that the wetting temperature rescaled by the bulk critical temperature decreases with an increase of the chain length. For longer chains this temperature reaches a plateau. For the surface critical temperature an inverse effect is observed, i.e., the surface critical temperature increases with the chain length and then attains a plateau. These findings may serve as a quick estimate of the wetting and surface critical temperatures for fluids of longer chain lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号