首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclodextrin glucanotransferase, produced by Bacillus megaterium, was characterized, and the biochemical properties of the purified enzyme were determined. The substrate specificity of the enzyme was tested with different α-1,4-glucans. Cyclodextrin glucanotransferase displayed maximum activity in the case of soluble starch, with a K m value of 3.4 g/L. The optimal pH and temperature values for the cyclization reaction were 7.2 and 60 °C, respectively. The enzyme was stable at pH 6.0–10.5 and 30 °C. The enzyme activity was activated by Sr2+, Mg2+, Co2+, Mn2+, and Cu2+, and it was inhibited by Zn2+and Ag+. The molecular mass of cyclodextrin glucanotransferase was established to be 73,400 Da by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, 68,200 Da by gel chromatography, and 75,000 Da by mass spectrometry. The monomer form of the enzyme was confirmed by the analysis of the N-terminal amino acid sequence. Cyclodextrin glucanotransferase formed all three types of cyclodextrins, but the predominant product was β-cyclodextrin.  相似文献   

2.
An extracellular thermostable xylanase from a newly isolated thermophilic Actinomadura sp. strain Cpt20 was purified and characterized. Based on matrix-assisted laser desorption–ionization time-of-flight mass spectrometry analysis, the purified enzyme is a monomer with a molecular mass of 20,110.13 Da. The 19 residue N-terminal sequence of the enzyme showed 84% homology with those of actinomycete endoxylanases. The optimum pH and temperature values for xylanase activity were pH 10 and 80 °C, respectively. This xylanase was stable within a pH range of 5–10 and up to a temperature of 90 °C. It showed high thermostability at 60 °C for 5 days and half-life times at 90 °C and 100 °C were 2 and 1 h, respectively. The xylanase was specific for xylans, showing higher specific activity on soluble oat-spelt xylan followed by beechwood xylan. This enzyme obeyed the Michaelis–Menten kinetics, with the K m and k cat values being 1.55 mg soluble oat-spelt xylan/ml and 388 min−1, respectively. While the xylanase from Actinomadura sp. Cpt20 was activated by Mn2+, Ca2+, and Cu2+, it was, strongly inhibited by Hg2+, Zn2+, and Ba2+. These properties make this enzyme a potential candidate for future use in biotechnological applications particularly in the pulp and paper industry.  相似文献   

3.
Four myrosinase (β-thioglucosidase EC. 3.2.3.1) and seven disaccharase (β-fructofuranosidase, EC. 3.2.1.26) isoenzymes were isolated from turnip leaves. The most active enzymes were isolated in pure form. Myrosinase and disaccharase mol wt was 62.0 × 103 and 69.5 × 103 dalton, respectively, on the basis of gel filtration on Sephadex G-200. Myrosinase pH profile showed high activity between pH 5 and 7 with the optimum at pH 5.5. The purified enzyme was heat-stable for 60 min at 30°C with only loss of 24% of activity. Its activity is strongly inhibited (100%) by Pb2+, Ba2+, Cu2+ and Ca2+ ions, and activated (70%) by EDTA at 0.04M. The pure enzyme failed to hydrolyze amylose, glycogen, lactose, maltose, and sucrose. TheK m andV max values of myrosinase using sinigrin as specific substrate was 0.045 mM and 2.5 U, respectively. The maximal activity of disaccharase enzyme was obtained at pH 4–5 and 35–37°C. The enzyme was heat-stable at 30°C for 30 min with only 10% loss of its activity. Its activity is strongly activated (70–240%) by Ca2+, Ba2+, Cu2+, and EDTA at 0.01M. The enzyme activity is specific to the disaccharide sucrose and failed to hydrolyze other disaccharides (maltose and lactose). TheK m andV max of disaccharase were 0.123 mM and 3.33 U, respectively.  相似文献   

4.
To obtain a high level expression of phytase with favorable characteristics, a codon-optimized phytase gene from Citrobacter freundii was synthesized and transferred into Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. After purified by Ni2+–NTA agarose affinity column, the characterizations of the recombinant phytase were determined. The recombinant phytase (r-phyC) had two distinct pH optima at 2.5 and 4.5 and an optimal temperature at 50 °C. It retained more than 80% activity after being incubated under various buffer (pH 1.5–8.0) at 37 °C for 1 h. The specific activity, Km, and Vmax values of r-phyC for sodium phytate were 2,072 ± 18 U mg−1, 0.52 ± 0.04 mM, and 2,380 ± 84 U mg−1 min−1, respectively. The enzyme activity was significantly improved by 1 mM of K+, Ca2+, and Mg2+. These characteristics contribute to its potential application in feed industry.  相似文献   

5.
A new α-amylase was extracted from a recently found strain of Bacillus sp. and purified by ion-exchange chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed a single band for the purified enzyme with an apparent molecular weight of 59 kDa. The optimum temperature and pH range of the enzyme were 40–60°C and 4.5–7.5, respectively, and its activation energy was 1.974 kcal/mol. The K m value for the enzyme activity on solubie starch was 4 mg/mL, and the T m values obtained from the circular dichroism (CD) results of thermal unfolding were 78.7 and 80.2°C in the absence and presence of the calcium, respectively. The enzyme was almost completely inhibited by the addition of Fe3+, Mn2+, and Zn2+ and was activated by EDTA, Cr3+, and Al3+. Moreover, it was partially inhibited by Ca2+, Ba2+, Ni2+, and Co2+. Proteolytic digestion of the enzyme using trypsin combined with results from T m using CD and irreversible thermoinactivation suggests that this enzyme can be considered a moderate thermophile with both mild flexibility and rigidity.  相似文献   

6.
In the present study, hexavalent chromium (Cr(VI)) reduction potential of chromium reductase associated with the cell-free extracts (CFE) of Arthrobacter rhombi-RE species was evaluated. Arthrobacter rhombi-RE, an efficient Cr(VI) reducing bacterium, was enriched and isolated from a chromium-contaminated site. Chromium reductase activity of Arthrobacter rhombi-RE strain was associated with the cell-free extract and the contribution of extracellular enzymes to Cr(VI) reduction was negligible. NADH enhanced the chromium reductase activity. The enzyme activity was optimal at a pH of 5.5 and a temperature of 30 °C. Among the ten electron donors screened, sodium pyruvate was the most effective one followed by NADH and propionic acid. Michaelis–Menten constant, K m, and maximum reaction rate, V max, obtained from the Lineweaver–Burk plot were 48 μM and 4.09 nM/mg protein/min, respectively, in presence of NADH as electron donor and 170.5 μM and 4.29 nM/mg protein/min, respectively, in presence of sodium pyruvate as electron donor. Ca2+ enhanced the enzyme activity while Hg2+, Cd2+, Ba2+, and Zn2+ inhibited the enzyme activity. Among the various immobilization matrices screened, calcium alginate beads seemed to be the most effective one. Though immobilized enzyme system was able to reduce Cr(VI), the performance was not very encouraging in continuous mode of operation.  相似文献   

7.
Three alginate lyases (A, B, and C) from an alginate-degrading marine bacterium strain HZJ216 isolated from brown seaweed in the Yellow Sea of China and identified preliminarily as Pseudomonas fluorescens are purified, and their biochemical properties are described. Molecular masses of the three enzymes are determined by SDS-PAGE to be 60.25, 36, and 23 kDa with isoelectric points of 4, 4.36, and 4.59, respectively. Investigations of these enzymes at different pH and temperatures show that they are most active at pH 7.0 and 35 °C. Alginate lyases A and B are stable in the pH range of 5.0–9.0, while alginate lyase C is stable in the pH range of 5.0–7.0. Among the metal ions tested, additions of Na+, K+, and Mg2+ ions can enhance the enzyme activities while Fe2+, Fe3+, Ba2+, and Zn2+ ions show inhibitory effects. The substrate specificity results demonstrate that alginate lyase C has the specificity for G block while alginate lyases A and B have the activities for both M and G blocks. It is the first report about extracellular alginate lyases with high alginate-degrading activity from P. fluorescens.  相似文献   

8.
Organic solvent- and detergent-resistant proteases are important from an industrial viewpoint. However, they have been less frequently reported and only few of them are from actinomycetes. A metalloprotease from Streptomyces olivochromogenes (SOMP) was purified by ion exchange with Poros HQ and gel filtration with Sepharose CL-6B. Apparent molecular mass of the enzyme was estimated to be 51 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and gelatin zymography. The activity was optimum at pH 7.5 and 50 °C and stable between pH 7.0 and 10.0. SOMP was stable below 45 °C and Ca2+ increased its thermostability. Ca2+ enhanced while Co2+, Cu2+, Zn2+, Mn2+, and Fe2+ inhibited the activity. Ethylenediaminetetraacetic acid and ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, but not phenylmethylsulfonyl fluoride, aprotinin, and pefabloc SC, significantly suppressed the activity, suggesting that it might be a metalloprotease. Importantly, it is highly resistant against various detergents, organic solvents, and oxidizing agents, and the activity is enhanced by H2O2. The enzyme could be a novel protease based on its origin and peculiar biochemical properties. It may be useful in biotechnological applications especially for organic solvent-based enzymatic synthesis.  相似文献   

9.
A thermostable xylanase from a newly isolated thermophilic fungus Talaromyces thermophilus was purified and characterized. The enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl cellulose anion exchange chromatography, P-100 gel filtration, and Mono Q chromatography with a 23-fold increase in specific activity and 17.5% recovery. The molecular weight of the xylanase was estimated to be 25kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and gel filtration. The enzyme was highly active over a wide range of pH from 4.0 to 10.0. The relative activities at pH5.0, 9.0, and 10.0 were about 80%, 85.0%, and 60% of that at pH7.5, respectively. The optimum temperature of the purified enzyme was 75°C. The enzyme showed high thermal stability at 50°C (7days) and the half-life of the xylanase at 100°C was 60min. The enzyme was free from cellulase activity. K m and V max values at 50°C of the purified enzyme for birchwood xylan were 22.51mg/ml and 1.235μmol min−1 mg−1, respectively. The enzyme was activated by Ag+, Co2+, and Cu2+; on the other hand, Hg2+, Ba2+, and Mn2+ inhibited the enzyme. The present study is among the first works to examine and describe a secreted, cellulase-free, and highly thermostable xylanase from the T. thermophilus fungus whose application as a pre-bleaching aid is of apparent importance for pulp and paper industries.  相似文献   

10.
In order to gain biosorbent that would have the ability to bind cesium ions from water solution effectively, potassium nickel hexacyanoferrate(II) (KNiFC) was incorporated into the mushroom biomass of Agaricus bisporus. Cesium sorption by KNIFC-modified A. bisporus biosorbent was observed in batch system, using radiotracer technique using 137Cs radioisotope. Kinetic study showed that the cesium sorption was quite rapid and sorption equilibrium was attained within 1 h. Sorption kinetics of cesium was well described by pseudo-second order kinetics. Sorption equilibrium was the best described by Freundlich isotherm and the distribution coefficient was at interval 7,662–159 cmg−1. Cesium sorption depended on initial pH of solution. Cesium sorption was very low at pH0 1.0–3.0. At initial pH 11.0, maximum sorption of cesium was found. Negative effect of monovalent (K+, Na+, NH4 +) and divalent (Ca2+, Mg2+) cations on cesium sorption was observed. Desorption experiments showed that 0.1 M potassium chloride is the most suitable desorption agent but the complete desorption of cesium ions from KNiFC-modifed biosorbent was not achieved.  相似文献   

11.
A commercialRhizomucor miehei lipase was purified by ammonium sulfate precipitation. Phenyl Sepharose 6 Fast Row hydrophobic interaction chromatography, and DEAE Sepharose Fast Flow anion-exchange chromatography. The recovery of lipase activity was 32% with a 42-fold purification. The molecular size of the purified enzyme was 31,600 Dalton and the pI 3.8. The enzyme was stable for at least 24 h within a pH range of 7.0-10.0, and 96.8% of the enzyme activity remained when kept at 30‡C for 24 h. Further, about 10–30% of the lipase activity was inhibited by K+, Li+, Ni+, Co2+, Zn2+, Mg2+, Sn2+, Cu2+, Ba2+, Ca2+, and Fe2+ ions and by SDS, but EDTA had no effect. Under the experimental conditions, the optimum temperature for the hydrolysis of olive oil was 50‡C (pH 8.0), and for the synthesis of 1-butyl oleate, 37‡C. It was concluded that hydrolytic activity of lipase alone is not a sufficient criterion for its synthetic potential. The optimal molar ratio of oleic acid and 1-butanol was 2:1 for 1-butyl oleate synthesis. The 1-butyl oleate yield was unaffected by purification of the enzyme after 12 h.  相似文献   

12.
Two peroxidases, cPOD-I and rPOD-II, have been isolated and purified from cotton cell suspension and their biochemical characteristics studied. rPOD-II from R405-2000, a non-embryogenic cultivar, has higher activity than cPOD-I derived from Coker 312, which developed an embryogenic structure. The cPOD-I and rPOD-II had molecular mass of 39.1 and 64 kDa respectively, as determined by SDS-PAGE. Both enzymes showed high efficiency of interaction with the guaiacol at 25 mM. The optimal pH for cPOD-I and rPOD-II activity was 5.0 and 6.0, respectively. The enzyme had an optimum temperature of 25 °C and was relatively stable at 20–30 °C. The isoenzymes were highly inhibited by ascorbic acid, dithiothreitol, sodium metabisulfite, and β-mercaptoethanol. Their activities were highly enhanced by Al3+, Fe3+, Ca2+, and Ni2+, but they were moderately inhibited by Mn2+ and K+. The enzyme lost 50% to 62% of its activity in the presence of Zn2+ and Hg2+.  相似文献   

13.
An endo-β-1,4-mannanase encoding gene, man5, was cloned from Bispora antennata CBS 126.38, which was isolated from a beech stump. The cDNA of man5 consists of 1,299 base pairs and encodes a 432-amino-acid protein with a theoretical molecular mass of 46.6 kDa. Deduced MAN5 exhibited the highest amino acid sequence identity of 58% to a β-mannanase of glycoside hydrolase family 5 from Aspergillus aculeatus. Recombinant MAN5 was expressed in Pichia pastoris and purified to electrophoretic homogeneity. The specific activity of the final preparation towards locust bean gum was 289 U mg−1. MAN5 showed optimal activity at pH 6.0 and 70 °C and had good adaptation and stability over a broad range of pH values. The enzyme showed more than 60% of peak activity at pH 3.0–8.0 and retained more than 80% of activity after incubation at 37 °C for 1 h in both acid and alkaline conditions (pH 4.0–11.0). The K m and V max values were 1.33 mg ml−1 and 444 μmol min−1 mg−1 and 1.17 mg ml−1 and 196 μmol min−1 mg−1 for locust bean gum and konjac flour, respectively. Of all tested metal ions and chemical reagents, Co2+, Ni2+, and β-mercaptoethanol enhanced the enzyme activity at 1 mM, whereas other chemicals had no effect on or partially inhibited the enzyme activity. MAN5 was highly resistant to acidic and neutral proteases (trypsin, α-chymotrypsin, collagenase, subtilisin A, and proteinase K). By virtue of the favorable properties of MAN5, it is possible to apply this enzyme in the paper and food industries.  相似文献   

14.
The collagenase, produced extracellular by Bacillus pumilus Col-J, was purified by ammonium sulfate precipitation followed by two gel filtrations, involving Sephadex G-100 column and Sepharose Fast Flow column. Purified collagenase has a 31.53-fold increase in specific activity of 87.33 U/mg and 7.00% recovery. The collagenase has a relative molecular weight of 58.64 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimal temperature for the enzyme reaction was 45 °C. More than 50% of the original activity still remained after 5 min of incubation at 70 °C or 10 min at 60 °C. The maximal enzyme activity of collagenase was obtained at pH 7.5, and it was stable over a pH range of 6.5–8.0. The collagenase activity was strongly inhibited by Mn2+, Pb2+, ethylenediamine tetraacetic acid, ethylene glycol tetraacetic acid, and β-mercaptoethanol. However, Ca2+ and Mg2+ greatly increased its activity. The collagenase from B. pumilus Col-J showed highly specific activity towards the native collagen from calf skin. The K m and V max of the enzyme for collagen were 0.79 mg/mL and 129.5 U, respectively.  相似文献   

15.
A novel potent protease, Urechis unicinctus fibrinolytic enzyme (UFE), was first discovered by our laboratory. In this study, we further investigated the enzymatic properties and dynamic parameters of UFE. As a low molecular weight protein, UFE appeared to be very stable to heat and pH. When the temperature was <50°C, the remnant enzyme activity remained almost unchanged, but when the temperature was raised to 60#x00B0;C the remnant enzyme activity began to decrease rapidly. UFE was quite stable in a pH range of 3.0–12.0, especially at slightly alkaline pH values. Mn2+, Cu2+, and Fe2+ ions were activators of UFE, whereas Fe3+ and Ag+ ions were inhibitors. Fe2+ ion along with Fe3+ ion might regulate UFE activity in vivo. The optimum pH and temperature of UFE were about 8.0 and 50°C, respectively. When using casein as substrate and a substrate concentration <0.1% casein (w/v), the reaction velocity was increased with substrate concentration. Also when using casein as substrate, the determined K m and V max of UFE were 0.5298 mg/mL and 3.0845 mol of l-tyrosine equivalent, respectively. Our systematic research results are significant when UFE is applied for medical and industrial purposes.  相似文献   

16.
Polyphenol oxidases (PPOs) were isolated from cell suspensions of two cultivars of cotton (Gossypium hirsutum L.), and their biochemical characteristics were studied. PPO from Coker 312, an embryogenic cultivar, showed a highest affinity to catechol 20 mM, and PPO from R405-2000, a nonembryogenic cultivar, showed a highest affinity to 4-methylcatechol 20 mM. The optimal pH for PPO activity was 7.0 and 6.0 for Coker 312 and R405-2000, respectively. The enzyme had an optimal temperature of 25 °C and was relatively stable at 20–30 °C. Reducing sodium metabisulfite, ascorbic acid, dithiothreitol, SnCl2, and FeCl3 markedly inhibited PPO activity, whereas its activity was highly enhanced by Mg2+, Ca2+, and Mn2+ and was moderately inhibited by Ba2+, Cu2+, and Zn2+. The analysis revealed a single band on the sodium dodecyl sulfate polyacrylamide gel electrophoresis which corresponded to a molecular weight of 55 kDa for Coker 312 and 42 kDa for R405-2000.  相似文献   

17.
The extracellular inulinase in the supernatant of the cell culture of the marine yeast Cryptococcus aureus G7a was purified to homogeneity with a 7.2-fold increase in specific inulinase activity compared to that in the supernatant by ultrafiltration, concentration, gel filtration chromatography (Sephadex™ G-75), and anion exchange chromatography (DEAE sepharose fast flow anion exchange). The molecular mass of the purified enzyme was estimated to be 60.0 kDa. The optimal pH and temperature of the purified enzyme were 5.0 and 50 °C, respectively. The enzyme was activated by Ca2+, K+, Na+, Fe2+, and Zn2+. However, Mg2+, Hg2+, and Ag+ acted as inhibitors in decreasing the activity of the purified inulinase. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, EDTA, and 1,10-phenanthroline. The K m and V max values of the purified enzyme for inulin were 20.06 mg/ml and 0.0085 mg/min, respectively. A large amount of monosaccharides were detected after the hydrolysis of inulin with the purified inulinase, indicating the purified inulinase had a high exoinulinase activity.  相似文献   

18.
The benzene tolerant Acinetobacter baylyi isolated from marine sludge in Angsila, Thailand could constitutively secrete lipolytic enzymes. The enzyme was successfully purified 21.89-fold to homogeneity by ammonium sulfate precipitation and gel-permeable column chromatography with a relative molecular mass as 30 kDa. The enzyme expressed maximum activity at 60°C and pH 8.0 with p-nitrophenyl palmitate as a substrate and found to be stable in pH and temperature ranging from 6.0-9.0 to 60-80°C, respectively. A study on solvent stability revealed that the enzyme was highly resisted to many organic solvents especially benzene and isoamyl alcohol, but 40% inhibited by decane, hexane, acetonitrile, and short-chain alcohols. Lipase activity was completely inhibited in the presence of Fe2+, Mn2+, EDTA, SDS, and Triton X-100 while it was suffered detrimentally by Tween 80. The activity was enhanced by phenylmethylsulfonyl fluoride (PMSF), Na+, and Mg2+ and no significant effect was found in the presence of Ca2+ and Li+. Half of an activity was retained by Ba2+, Ag+, Hg+, Ni2+, Zn2+, and DTT. The enzyme could hydrolyze a wide range of p-nitrophenyl esters, but preferentially medium length acyl chains (C8-C12). Among natural oils and fats, the enzyme 11-folds favorably catalyzed the hydrolysis of rice bran oil, corn oil, sesame oil, and coconut oil in comparison to palm oil. Moreover, the transesterification activity of palm oil to fatty acid methyl esters (FAMEs) revealed 31.64 ± 1.58% after 48 h. The characteristics of novel A. baylyi lipase, as high temperature stability, organic solvent tolerance, and transesterification capacity from palm oil to FAMEs, indicate that it could be a vigorous biocatalyzer in the prospective fields as bioenergy industry or even in organic synthesis and pharmaceutical industry.  相似文献   

19.
Isothermal titration calorimetry has been used to determine the stoichiometry, formation constants and thermodynamic parameters (ΔG o, ΔH, ΔS) for the formation of the citrate complexes with the Mn2+, Co2+, Ni2+ and Zn2+ ions. The measurements were run in Cacodylate, Pipes and Mes buffer solutions with a pH of 6, at 298.15 K. A constant ionic strength of 100 mM was maintained with NaClO4. The influence of a metal ion on its interaction energy with the citrate ions and the stability of the resulting complexes have been discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号