首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
硅胶表面亮菌甲素分子印迹聚合物的制备及其性能研究   总被引:1,自引:0,他引:1  
采用光接枝印迹方法,在硅胶微球表面制备了以亮菌甲素为模板分子、2-乙烯基吡啶为功能单体的分子印迹聚合物,采用荧光法优选了功能单体及比例,进一步用荧光法对印迹聚合物的吸附特性和印迹效率进行评价.结果表明.该印迹聚合物对模板分子具有特异吸附性能,印迹效率为48.6%.  相似文献   

2.
水溶液中制备分子印迹聚合物微球及其分子识别特性 研究   总被引:19,自引:0,他引:19  
采用聚乙烯醇400作为分散剂,利用模板分子与功能单体/聚合物残基之间的离子键(静电)相互作用形成复合物,用水溶液微悬浮聚合法制备了4-氨基吡啶(4-AP)和甲氧苄氨嘧啶(TMP)分子印迹聚合物微球,并通过色谱行为表征,比较了它们对各自的模板分子作用的强弱。结果表明,采用甲基丙烯酸为功能单体制备的分子印迹聚合物微球(MIMs),对带有氨基的模板分子主要靠离子键(静电)相互作用,且作用力的大小与氨基的个数有关,色谱研究表明,模板分子中氨基数目越多,这种作用越强,而且这种作用不是简单的加合,而是协同增强作用。  相似文献   

3.
三唑酮分子印迹预组装体系的分子模拟与吸附性能   总被引:2,自引:0,他引:2  
以三唑酮为模板分子, 以丙烯酰胺(AM)、 丙烯酸(AA)、 甲基丙烯酸(MAA)和三氟甲基丙烯酸(TFMAA)为功能单体预组装了分子印迹聚合物体系, 采用半经验法和从头算法, 利用Hyperchem软件模拟了三唑酮与4种功能单体所组成的分子印迹预组装体系的构型、 能量、 反应配比及复合反应的结合能, 选择复合物结合能最高的功能单体用于分子印迹聚合物的合成. 采用密度泛函方法计算了模板与单体在不同致孔剂中的溶剂化能. 结果表明, 三唑酮与三氟甲基丙烯酸所形成复合物的作用力最强, 在非极性溶剂中溶剂化能最弱. 由预组装体系的差示紫外光谱法研究发现, 一分子三唑酮可与两分子三氟甲基丙烯酸在氯仿中形成氢键复合物, 与分子模拟的结果一致. 在最佳模拟条件下, 合成了三唑酮的印迹聚合物, 利用吸附等温线Langmuir和Freundlich模型研究了印迹聚合物的吸附行为及识别机理. 上述方法对于分子印迹体系的筛选及分子印迹聚合物性能的预测有重要的意义.  相似文献   

4.
以苏丹红Ⅰ为模板分子,α-甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,通过沉淀聚合法合成了高选择性的分子印迹聚合物。通过静态吸附实验研究了聚合物的吸附性能,采用紫外光谱(UV)和核磁共振氢谱(1 H NMR)法研究了聚合物的识别机理。实验结果表明:模板分子和功能单体之间的作用为分子间氢键;红外(IR)光谱研究进一步表明,印迹聚合物通过非共价氢键作用特异性地识别模板分子。  相似文献   

5.
以鹅去氧胆酸(CDCA)为印迹分子, 甲基丙烯酸为功能单体, 丙烯酸乙二醇二甲基酯和三羟甲基丙烷三甲基丙烯酸酯为交联剂, 在氯仿中采用沉淀聚合法制得平均粒径为200~300 nm的分子印迹聚合物微球(MIPMS). 用红外光谱研究了印迹分子与功能单体之间的作用类型, 用透射电镜对聚合物的形貌进行了表征. 结果表明, 聚合物微球在合成过程中形成了两类结合位点, 该分子印迹聚合物对CDCA具有良好的特异吸附性能, 可用于胆汁酸的分离、纯化, 交联剂的种类可以影响分子印迹聚合物的形貌和吸附性能.  相似文献   

6.
采用分子印迹技术合成了吡哌酸分子印迹聚合物。运用平衡结合实验研究了聚合物的吸附特性和选择性识别能力。Scatchard分析表明,在本文所研究的浓度范围内,聚合物中形成了两类不同的结合位点。吡哌酸分子印迹聚合物对吡哌酸呈现较高的选择识别特性,可作为固相萃取剂,在人血清吡哌酸的分析中对样品进行了有效的提取和净化。  相似文献   

7.
以盐酸强力霉素(DC)为模板分子、甲基丙烯酸为功能单体、乙二醇二甲基丙烯酸酯为交联剂、四氢呋喃(THF)为溶剂.采用本体聚合法制备了DC的分子印迹聚合物.在水溶液中,采用平衡结合方法和Scatchard模型评价了该聚合物的结合特性及识别机理,并考察了DC分子印迹聚合物的选择性吸附能力.结果表明,在所研究的浓度范围内,D...  相似文献   

8.
染料木素分子印迹聚合物的制备及其识别性能   总被引:1,自引:0,他引:1  
以染料木素为模板分子、4-乙烯基吡啶(4-VP)为功能单体、乙二醇二甲基双丙烯酸酯(EGDMA)为交联剂、四氢呋喃(THF)为溶剂,采用本体聚合法制备了染料木素的分子印迹聚合物;采用静态平衡结合实验研究了该分子印迹聚合物对染料木素的结合能力和选择性能.结果表明,与化学组成相同的相应非印迹聚合物相比,染料木素分子印迹聚合物对染料木素的吸附性能和选择性更好.利用所合成的分子印迹聚合物作为固相萃取材料填充固相萃取小柱,可以选择性地从豆奶粉中分离、富集染料木素;此外,该分子印迹聚合物还有望用于其他豆制品的分析检验.  相似文献   

9.
以丙烯酰胺为功能单体, 以二甲基丙烯酸乙二醇酯为交联剂, 在模板分子N-叔丁氧羰酰-L-色氨酸(N-Boc-L-Trp)和N-叔丁氧羰酰-L-酪氨酸(N-Boc-L-Tyr)的存在下, 分别采用光引发聚合和热引发聚合制备了N-Boc-L-Trp和N-Boc-L-Tyr的分子印迹聚合物(MIPs), 进行分子印迹手性分离过程的热力学研究. 测定了分离过程的熵变、焓变和自由能变化. 结果显示, 在流动相中添加异丙醇或甲醇等强氢键竞争性溶剂时, 熵变对分离起到了主要作用, 而且分离过程中的溶剂化对分离的影响也非常大. 分子印迹聚合物对印迹分子和非印迹分子进行分子识别的主要作用是印迹聚合物与印迹分子匹配的三维空间结构.  相似文献   

10.
分子印迹-仿生传感器的研究进展   总被引:7,自引:1,他引:6  
何永红  高志贤  晁福寰 《分析化学》2004,32(10):1407-1412
分子印迹技术是制备具有选择性分子识别能力聚合物(分子印迹聚合物)的新兴化学合成技术。分子印迹聚合物的一个重要应用是在生物传感器中取代生物分子作为识别元件,研制耐受性强、低成本的分子印迹仿生传感器。综述了分子印迹技术的基本原理及其在仿生传感器方面的应用研究现状,并对分子印迹仿生传感器的发展前景进行了评述。引用文献24篇。  相似文献   

11.
2,4,6-Trichlorophenol (2,4,6-TCP)-imprinted micro- and submicrospheres prepared by precipitation polymerization were compared with templated materials obtained by conventional bulk polymerization. The influence of the type and amount of functional monomer, the type and amount of cross-linker, polymerization temperature, porogen, and the ratio of template molecule and functional monomer to cross-linker on the size of the obtained particles were investigated. UV-Vis spectrophotometer experiments revealed that the microsphere polymers provided higher affinity to the template in contrast to imprinted polymers prepared by bulk polymerization. The binding properties of the microspheres, including binding isotherms and affinity distribution, were studied via Freundlich isotherm affinity distribution (FIAD) analysis. The obtained results indicated that microspheres prepared by precipitation polymerization provided superior rebinding properties during equilibrium binding in contrast to bulk polymers and submicrosphere polymers. Moreover, release experiments showed that 80% of rebound 2,4,6-TCP was released from the imprinted microspheres within the first 2 h, while more intimately bound 2,4,6-TCP molecules were released in the following 40 h. The morphologies and porosities of the resulting imprinted materials were characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, respectively. The microsphere polymers exhibited a regular spherical shape with a high degree of monodispersity to the corresponding bulk polymers. Furthermore, the micro- and submicrospheres were characterized by narrow distribution of pores in contrast to a heterogeneity index of m = 0.6647 for the microsphere imprinted polymer.  相似文献   

12.

The quercetin molecularly imprinted polymer microspheres were prepared by reversible addition-fragmentation chain transfer free radical polymerization combined with precipitation method (RAFTPP) with the dibenzyl trithiocarbonate (DBTTC) as RAFT reagent and quercetin as template molecule. The effects of solvents and cross-linking agent on the morphology and size of polymers were investigated, and the polymers were preliminarily screened by scanning electron microscope. The adsorption experiment and adsorption model analysis were carried out on the molecularly imprinted polymers (R-MIP) prepared under optimal condition and on the molecularly imprinted polymers prepared with a traditional precipitation polymerization (T-MIP). Consequently it was determined that, QR-MIP max was 37.71 mg g?1 and QT-MIP max was 29.61 mg g?1. The results showed that the R-MIP had a good adsorptive property and was obviously superior to T-MIP. R-MIP was used as solid-phase extraction filler in combination with the HPLC method to conduct enrichment, separation and measurement of the quercetin in honeysuckle and clove leaves, which effectively removed the matrix interference and the recovery rate of this method was 93.8–102.9%.

  相似文献   

13.
Estrone molecularly imprinted polymers were synthesized through the self‐polymerization of dopamine on the surface of silica gels, which had the characteristics of mild polymerization conditions, simple reaction procedure and good specific recognition ability for estrone. The estrone molecularly imprinted polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis and nitrogen adsorption–desorption tests. The characterization confirmed that the imprinted polymers were successfully grafted on the surface of silica gels. Through investigating the adsorption performance, the prepared estrone molecularly imprinted polymers exhibited high adsorption capacity, fast mass transfer, as well as excellent selectivity toward estrone. The estrone molecularly imprinted polymers as the solid‐phase extraction adsorbent coupled with high‐performance liquid chromatography was developed to determine estrone from the milk samples. The developed estrone molecularly imprinted polymer solid‐phase extraction with high‐performance liquid chromatography method exhibited satisfactory specificity, precision, accuracy and good linearity relationship in the range of 0.2–20 μg/mL. The developed method is simple, fast, effective and high specificity method and it provides a new method to detect the residues of estrone in animal foods.  相似文献   

14.
本文选用马来酸酐修饰后的硅胶作为载体,丙烯酰胺为功能单体,N,N’-亚甲基双丙烯酰胺为交联剂,牛血红蛋白为模板分子,采用氧化还原悬浮聚合法,合成了具有选择性识别的牛血红蛋白分子印迹聚合物。并用红外光谱(IR)、扫描电子显微镜(SEM)对聚合物进行了表征,结果表明载体表面成功接枝了分子印迹聚合物薄层。同时,选择性吸附实验表明分子印迹聚合物的具有良好的识别性能,能成功的实现水溶液中牛血红蛋白的富集。  相似文献   

15.
Monodisperse molecularly imprinted polymers for oleanolic acid were successfully prepared by a precipitation polymerization method using oleanolic acid as a template, methacrylic acid as a functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as a crosslinker in a mixture of acetonitrile and ethanol (3:1, v/v). The imprinted polymers and nonimprinted polymers were characterized by using scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The resulting imprinted polymers had average diameters of 3.15 μm and monodispersity values of 1.024. The results clearly demonstrate that use of ethanol as a cosolvent is indeed exceedingly effective in promoting the dissolution of oleanolic acid and in obtaining uniform microspheres. Molecular recognition properties and binding capability to oleanolic acid were evaluated by adsorption testing, which indicated that the imprinted polymers displayed optimal binding performance with a maximum adsorption capacity of 17.3 mg/g and a binding saturation time of 80 min. Meanwhile, the produced imprinted polymers exhibited higher selectivity to oleanolic acid than that for ursolic acid and rhein. Herein, the studies can provide theoretical and experimental references for the oleanolic acid molecular imprinted system.  相似文献   

16.
为了制备能有效分离富集药草中槲皮素的固相萃取柱,以丙烯酰胺(AM)修饰的碳纳米管为载体,三硫代碳酸酯(DBTTC)为可逆加成-断裂链转移剂(RAFT试剂),槲皮素为模板,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,乙腈为致孔剂,制备了槲皮素分子印迹聚合物,采用红外光谱、扫描电镜和热重分析对印迹材料进行表征,通过高效液相色谱(HPLC)研究聚合物的吸附性能和对底物的特异性识别能力。结果表明,通过活性自由基聚合法合成的多壁碳纳米管表面槲皮素分子印迹聚合具有更好的形态结构和吸附性能,且对槲皮素有很好的特异性识别能力。  相似文献   

17.
Erythromycin‐imprinted polymers with excellent recognition properties were prepared by an innovative strategy called distillation–precipitation polymerization. The interaction between erythromycin and methacrylic acid was studied by ultraviolet absorption spectroscopy, and the as‐prepared materials were characterized by Fourier‐transform infrared spectroscopy and scanning electron microscopy. Moreover, their binding performances were evaluated in detail by static, kinetic and selective sorption tests. It was found that the molecularly imprinted polymers afforded good morphology, monodispersity, and high adsorption capacity when the fraction of the monomers was 7 vol% in the whole reaction system, and the adsorption data for imprinted polymers correlated well with the Langmuir model. The maximum capacity of the imprinted and the non‐imprinted polymers for adsorbing erythromycin is 44.03 and 19.95 mg/g, respectively. The kinetic studies revealed that the adsorption process fitted a pseudo‐second‐order kinetic model. Furthermore, the imprinted polymers display higher affinity toward erythromycin, compared with its analogue roxithromycin.  相似文献   

18.
Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux‐vomica extract powder.  相似文献   

19.
In this work, luteolin‐imprinted polymers were prepared by noncovalent precipitation polymerization for the first time. Their structural features and morphologies were analyzed by using Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The adsorption experiments revealed that the luteolin‐imprinted polymers presented high selective recognition property to luteolin. The selectivity experiment showed that the adsorption capacity and selectivity of polymers to luteolin was higher than that of three structural analogs, including quercetin, isorhamnetin, and ombuin. Furthermore, an efficient method based on luteolin‐imprinted polymers coupled with solid‐phase extraction was developed for the pretreatment of luteolin from Chrysanthemum morifolium Ramat. The results demonstrated that the luteolin‐imprinted polymers coupled with solid phase extraction method was proven to be a potentially competitive technique for the separation and enrichment of luteolin in complex samples such as Chinese patent medicines and biological samples.  相似文献   

20.
The first use of yeast as a support in the molecular imprinting field combined with atom transfer radical polymerization was described. Then, the as‐prepared molecularly imprinted polymers were characterized by Fourier transmission infrared spectrometry, scanning electron microscope, thermogravimetric analysis, and elemental analysis. The obtained imprinted polymers demonstrated elliptical‐shaped particles with the thickness of imprinting layer of 0.63 μm. The batch mode experiments were adopted to investigate the adsorption equilibrium, kinetics, and selectivity. The kinetic properties of imprinted polymers were well described by the pseudo‐second‐order kinetic equation, indicating the chemical process was the rate‐limiting step for the adsorption of cefalexin (CFX). The equilibrium data were well fitted by the Freundlich isotherm, and the multimolecular layers adsorption capacity of imprinted polymers was 34.07 mg g?1 at 298 K. The selectivity analysis suggested that the imprinted polymers exhibited excellent selective recognition for CFX in the presence of other compounds with related structure. Finally, the analytical method based on the imprinted polymers extraction coupled with high‐performance liquid chromatograph was successfully used for CFX analysis in spiked pork and water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号