共查询到20条相似文献,搜索用时 62 毫秒
1.
采用离子凝胶法制备了一种新的壳聚糖-g-聚丙烯酸/埃洛石/海藻酸钠(CTS-g-PAA/HT/SA)凝胶小球。研究了HT含量对载药凝胶小球的溶胀性、包封效率和释放性能等的影响;同时也讨论了凝胶小球的pH敏感性和双氯芬酸钠(DS)的释放行为。结果表明:HT含量对载药凝胶小球的溶胀率、包封效率和累积释放率有明显的影响,在HT含量为30%时,溶胀率、包封效率和12h累积释放率分别达到32.84%、91.07%和100%;另外,载药凝胶小球具有较好的pH敏感性;在pH=2.1的释放介质中DS几乎不释放,而在pH=6.8的释放介质中缓慢释放;DS释药机理为溶胀控释。 相似文献
2.
合成了三种亲疏水性不同的温度及pH敏感的PAAc/P(NIPAAm-co-BMA)、PAAc/PNIPAAm和PAAc/P(NIPAAm-co-AAm)互穿网络(IPN)水凝胶,以水杨酸钠和水杨酸为模型药物,研究了温度、pH值及药物和凝胶的亲疏水性相互作用对模型药物释药性能的影响。研究结果表明,随着凝胶亲水性的增强,水杨酸钠的载药率提高,释药率也越大;相反疏水性增强也有利于提高水杨酸的载药率;IPN凝胶在水中的释药过程属于溶胀支配型释放,药物释放率随凝胶的亲水性增强而增强,同时,载药凝胶在45℃水中的释药率大于25℃时的释药率。在25℃时,水杨酸在pH=2.2的缓冲溶液中几乎不释放,而在pH=7.4的缓冲溶液中能以较快的速率释放。 相似文献
3.
4.
β-环糊精交联聚丙烯酸水凝胶的合成及其药物控制释放研究 总被引:4,自引:0,他引:4
采用1,3-二环己基碳化二亚胺(DCC)为缩合剂,通过β环糊精与丙烯酸的酯化反应合成了不同取代度的丙烯酸β环糊精酯(βCD6A),以此为单体与丙烯酸通过氧化还原自由基引发聚合,合成出了不同交联密度和不同环糊精含量的新型水凝胶(AAβCD6A).溶胀实验表明,该类水凝胶均具有pH敏感性,溶胀动力学实验进一步对其机理进行了探讨.选择苯丁酸氮芥(CHL)作为模型药物,考察了不同pH下AAβCD6A水凝胶对药物释放行为的影响.结果表明,pH=6.8时药物释放率均大于pH=2.0时药物释放率,环糊精的存在表现出促释作用. 相似文献
5.
壳聚糖载药阿司匹林复合纤维的制备及其释药性能 总被引:1,自引:0,他引:1
为研制具有缓释效果的解热镇痛材料,以阿司匹林(Asp)为模型药剂、壳聚糖(CS)为纺丝基材、聚丙烯酸钠(PAAS)为助纺高分子,采用静电纺丝和热处理制备了Asp-CS/PAAS复合纤维材料;研究了热处理温度对复合纤维微观形貌、化学结构、力学性能以及体外释药行为的影响.结果表明:以10wt%的聚丙烯酸钠作为共纺高分子可以... 相似文献
6.
利用二氧化碳(CO2)对壳聚糖的改性作用,制备了负载银纳米粒子(AgNPs)的壳聚糖凝胶小球。首先测试了壳聚糖/1%醋酸溶液的电导率和黏度随CO2通入时间的变化规律,证实了CO2能与壳聚糖的氨基发生反应,并且当CO2通入时间为30 min时,反应产生的氨基甲酸含量最高。从而利用反应产生的氨基甲酸有效增加了壳聚糖上银的配位点。通过扫描电镜(SEM),X射线衍射(XRD),X射线光电子能谱(XPS),衰减全反射傅里叶红外光谱(ATR-FTIR)对小球进行表征,结果显示Ag与壳聚糖上的N,O配位,CO2改性后的壳聚糖载银能力提高了一倍。当CO2通入时间为30 min时,负载的AgNPs含量最大并且尺寸最小。最后,将制备的载银壳聚糖(CS-Ag)凝胶小球用于催化活性染料亚甲基蓝的还原反应。结果表明,在相同的反应条件下,CO2改性的CS-Ag小球催化还原亚甲基蓝的反应速率高于未改性的小球,且CO2改性时间为30 min的小... 相似文献
7.
8.
建立了分析含有高分子辅料的凝胶类制剂中活性成分的中空纤维离心超滤前处理方法,并结合高效液相色谱法(HPLC)测定双氯芬酸钠凝胶含量。凝胶样品经中空纤维离心装置纯化,滤除样品中高分子辅料,采用HPLC法测定双氯芬酸钠凝胶的含量。经聚偏氟乙烯中空纤维膜对样品进行超滤处理,有效去除了高分子凝胶辅料的干扰。实验采用Phenomenexc C18柱,流动相为甲醇-0.1%乙酸溶液(体积比85∶15),检测波长为276nm。双氯芬酸钠在5.10~30.6μg·mL~(-1)范围内呈良好的线性关系(r=0.9998)。样品平均回收率为99.8%,相对标准偏差不大于1.6%。所建立的方法简便、快速,定量准确,可用于双氯芬酸钠凝胶的含量测定。 相似文献
9.
聚乙烯醇/羧甲基壳聚糖共混水凝胶的辐射合成及性能 总被引:1,自引:0,他引:1
采用电子加速器辐照法制备了聚乙烯醇(PVA)/羧甲基壳聚糖(CMCH)共混水凝胶;研究了PVA与CMCH的配比、辐照剂量、温度以及pH值对PVA/CMCH共混水凝胶性能的影响.实验发现,PVA与CMCH在辐照剂量为40 kGy、配比为w(PVA)/w(CMCH)=5/1的条件下可得到强度较好的PVA/CMCH共混水凝胶,该水凝胶具有一定的温度和pH敏感性:在5~20℃时具有较高的溶胀率,温度在20℃以上溶胀率较低;水凝胶在pH<4.0和pH>6.0时溶胀率均较大,而当pH为4.0~6.0时溶胀率较小. 相似文献
10.
PVA-PAMPS-PAA三元互穿网络型水凝胶的合成及其性能研究 总被引:4,自引:0,他引:4
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)以及聚乙烯醇(PVA)为原料,制备了PVA-PAMPS-PAA三元互穿网络型(T-IPN)水凝胶.红外分析表明,PVA与PAA以及PAMPS之间形成了较强的氢键,使得PVA分子上的C—O伸缩震动吸收峰移向了低波数处.X射线衍射以及电镜分析表明,当PVA用量较低时,PVA能均匀的穿插于凝胶网络中,形成完善的互穿网络结构,当PVA用量过高时,部分的PVA结晶而使得凝胶出现相分离.研究了该三元互穿网络型水凝胶的溶胀性能,结果表明,该水凝胶的平衡溶胀比在200至340之间,并且随着AA以及AMPS用量的增加,凝胶的溶胀速率以及平衡溶胀比均升高.该三元互穿网络型水凝胶在酸性溶液中和在碱性溶液中表现出截然不同的消溶胀性能;并且随着溶液pH的升高,凝胶在pH=9.0附近出现体积突变,表现出pH敏感性.通过研究T-IPN水凝胶的抗压缩性能发现,利用线型高分子、柔性高分子网络以及刚性高分子网络制备的三元互穿网络型水凝胶能在高溶胀比下保持较高的强度.溶胀比为180的T-IPN水凝胶,其最大抗压缩强度可达12.1 MPa.进一步研究发现,凝胶的组成以及溶胀比均对凝胶的抗压缩强度和压缩应变均存在较大的影响. 相似文献
11.
以肠溶性的羟丙基甲基纤维素邻苯二甲酸酯(HPMCP)作为包覆材料,制备了HPMCP包覆的SBA-15介孔分子筛药物控释载体(HPMCP/SBA-15),并考察了抗癌药物5-氟尿嘧啶(5-Fu)负载于控释载体后,在不同pH释放环境中的释放行为.结果表明,在模拟胃液中(pH=1.2),HPMCP能明显地延缓5-Fu的释放速度;药物释放4h后,其释放率仅为15%.而在模拟肠液中(pH=7.5)HPMCP迅速溶解,对5-Fu释放速度的影响甚微;药物释放4h后,释放率可达到80%.与此同时,包覆膜的干燥温度影响5-Fu的释放行为,干燥温度越高,药物在模拟胃液中的释放速度越慢. 相似文献
12.
歧化松香胺-壳聚糖缀合物的合成、表征及药控缓释行为 总被引:1,自引:1,他引:0
以天然可再生资源壳聚糖和歧化松香胺为原料,经由苯甲醛保护氨基的Schiff碱壳聚糖,通过环氧氯丙烷搭桥生成具有环氧活性基的壳聚糖,再与歧化松香胺发生接枝反应,首次合成了一种新型壳聚糖衍生物--歧化松香胺-壳聚糖缀合物(DRACC),通过FT-IR、UV、1H-NMR、XRD、SEM和TG-DTA等测试手段对产物进行了分析和表征.由元素分析法测得DRACC的取代度为0.506.并分别以壳聚糖和DRACC作为药物非诺洛芬钙缓释制剂的载体,研究了其在人工肠液和人工胃液中的缓释性能.结果表明,DRACC载体在人工肠液和人工胃液中均具有良好的缓释作用. 相似文献
13.
14.
The aim of this study was to synthesize and characterize a novel biocompatible polymeric membrane system and demonstrate its potential use in various biomedical applications. Synthetic hydrogels based on poly(hydroxyethyl methacrylate), poly(HEMA), have been widely studied and used in biomedical fields. A novel copolymer hydrogel was prepared in the membrane form using 2-hydroxyethyl methacrylate monomer (HEMA) and a macromonomer p-vinylbenzyl-poly(ethylene oxide) (V-PEO) via photoinitiated polymerization. A series of poly(HEMA/V-PEO) copolymer membranes with different compositions was prepared. The membranes were characterized using infrared, thermal and SEM analysis. The thermal stabilities of the copolymer membranes were found to be lowered by an increase in the ratio of macromonomer (V-PEO) in the membrane structure. Because of the incorporation of PEO segments, the copolymers exhibited significantly higher hydrophilic surface properties than pure poly(HEMA), as demonstrated by contact angle measurements. Equilibrium swelling studies were conducted to investigate the swelling behavior of the membranes. The equilibrium water uptake was reached in about 4 h. Moreover, the blood protein adsorption and platelet adhesion were significantly reduced on the surface of the PEO containing copolymer membranes compared to control pure poly(HEMA). Drug release experiments were performed in a continuous release system using model drug (vancomycin) loaded copoly(HEMA/V-PEO) membranes. A specific poly(HEMA/V-PEO) membrane formulation possessing the highest PEO content (with a HEMA:V-PEO (mmol:mmol) feed ratio of 112:1 and loaded with 40 mg antibiotic/g polymer) released about 81% of the total loaded drug in 24 h at pH 7.4. This membrane composition provided the best results and can be considered as a potential candidate for a transdermal antibiotic carrier and various biomedical and biotechnological applications. 相似文献
15.
Rodríguez G Gallardo A Fernández M Rebuelta M Buján J Bellón JM Honduvilla NG Escudero C San Román J 《Macromolecular bioscience》2004,4(6):579-586
Hydrophilic polymeric drugs bearing "Triflusal" (4-trifluoromethylsalicylic acid), a drug widely used as antithrombogenic agent (Disgren), have been prepared by free radical copolymerization of methacryloyloxyethyl [2-(acetyloxy)-4-(trifluoromethyl)] benzoate (HTRF) and N,N'-dimethylacrylamide (DMA). The reactivity ratios of both monomers have been determined by 1H NMR spectra by applying non-linear least square treatments to the copolymerization equation (terminal model), and the kinetic parameters obtained indicated that the microstructure of copolymer chains is homogeneous, with a random distribution of the active HTRF units along the copolymer chains. That means that for the copolymer system THDMA22 used in this work, HTRF units are mainly isolated in relatively long DMA sequences. Therefore, in this structure the intramolecular interactions between adjacent HTRF units are negligible. Release of Triflusal from THDMA22 has been studied in vitro using buffered solutions at pH = 2, 7.4 and 10 and 37 degrees C. The system showed an interesting pseudo-zero order release profile at pH = 7.4 during several months. It has been also evaluated the pharmacological activity and the behavior of the system in contact with biological media. In this sense, we have carried out some in vitro studies about the antiaggregant properties and biocompatibility of THDMA22. Results demonstrate that this copolymer inhibits platelet aggregation in its macromolecular form and presents a good biocompatibility with Human Osteoblastic Cells (HOS). 相似文献
16.
Pose-Vilarnovo B. Rodríguez-Tenreiro Sánchez C. Diéguez Moure N. Vila-Jato J. L. Torres-Labandeira J. J. 《Journal of Thermal Analysis and Calorimetry》2003,73(2):661-670
The effect of a hydrophilic polymer, hydroxypropylmethyl cellulose K4M, on the complexation of diclofenac sodium with b- and
hydroxypropyl-b-cyclodextrins has been studied. Multicomponent systems were prepared with the drug, both cyclodextrin and
the polymer. Phase solubility diagrams revealed the positive effect of the polymer on the complexation of the drug but this
effect was found after autoclaving the solutions. Solid inclusion complexes were prepared by freeze-drying and characterized
by thermal analysis (DSC) and X-ray diffractometry. In solid state, binary inclusion complexes enhance the dissolution behaviour
of diclofenac but, from the b-cyclodextrin multicomponent complex, the polymer controls the release of the drug. In the case
of hydroxy- propyl-b-cyclodextrin multicomponent system, the solubility of the drugs increases significantly compared with
the binary complex.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
17.
《先进技术聚合物》2018,29(7):2072-2079
A superabsorbent composite was synthesized through free‐radical graft copolymerization of carboxymethyl cellulose, acrylamide, and montmorillonite by means of a crosslinker such as N,N′‐methylenebisacrylamide and potassium persulfate as an initiator. The preparation mechanism was proposed, and the composite structures were confirmed by using Fourier transform infrared spectroscopy, X‐ray diffraction, thermal gravimetric analysis, and scanning electron microscope. The factors influencing the swelling capacity of the composite were determined to accomplish the highly swelling capacity. The composition (15 wt% carboxymethyl cellulose, 5.4 wt% montmorillonite, 82 wt% acrylamide, 0.07 wt% N,N′‐methylenebisacrylamide, and 1.1 wt% potassium persulfate) exhibited high swelling capacity; it was selected to be loaded with urea fertilizer, and the release was investigated by measuring the conductivity. The results showed that the new controlled release system has good slow release properties. 相似文献
18.
Reza Alizadeh Sara Majd Jabbari Amir H. Zarnani Hamidreza Barghi 《Biomedical chromatography : BMC》2016,30(9):1346-1353
The present study deals with preparation and optimization of a novel chitosan hydrogel‐based matrix by suspension cross‐linking method for controlled release of Depo‐Medrol. The controlled release of Depo‐Medrol for effective Rheumatoid arthritis disease has become an imperative field in the drug delivery system. In this context, it was intended to optimize loading circumstances by experimental design and also study the release kinetics of Depo‐Medrol entrapped in the chitosan matrix in order to obtain maximal efficiency for drug loading. The optimum concentrations of chitosan (2.5 g), glutaraldehyde (3.05 μL) and Depo‐Medrol (0.1 mg) were set up to achieve the highest value of drug loaded and the most sustained release from the chitosan matrix. In vitro monitoring of drug release kinetic using high‐performance liquid chromatography showed that 73% of the Depo‐Medrol was released within 120 min, whereas remained drug was released during the next 67 h. High correlation between first‐order and Higuchi's kinetic models indicates a controlled diffusion of Depo‐Medrol through the surrounding media. Moreover, recovery capacity >82% and entrapment efficiency of 58–88% were achieved under optimal conditions. Therefore, the new synthesized Depo Medrol–chitosan is an applicable appliance for arthritis therapy by slow release mechanism. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
19.
Shashank Shukla Joseph Favata Vikas Srivastava Sina Shahbazmohamadi Anubhav Tripathi Anita Shukla 《Journal of polymer science. Part A, Polymer chemistry》2020,58(10):1365-1379
Developing optimized hydrogel products requires an in-depth understanding of the mechanisms that drive hydrogel tunability. Here, we performed a full 4 × 4 factorial design study investigating the impact of gellan, a naturally derived polysaccharide (1%, 2%, 3%, or 4% w/v) and CaCl2 concentration (1, 3, 7, or 10 mM) on the viscoelastic, swelling, and drug release behavior of gellan hydrogels containing a model drug, vancomycin. These concentrations were chosen to specifically provide insight into gellan hydrogel behavior for formulations utilizing polymer and salt concentrations expanding beyond those commonly reported by previous studies exploring gellan. With increasing gellan and CaCl2 concentration, the hydrogel storage moduli (0.1–100 kPa) followed a power-law relationship and on average these hydrogels had higher liquid absorption capability and greater total drug release over 6 days. We suggest that the effects of gellan and CaCl2 concentration and their interactions on hydrogel properties can be explained by various phenomena that lead to increased swelling and increased resistance to network expansion. 相似文献
20.
Glutaraldehyde cross‐linked chitosan microspheres for controlled release of isoniazid were prepared using chitosan of different molecular weights (MWs) and degrees of deacetylation (DDAs). Chitosan microspheres were characterized for their size, hydrophobocity, degree of swelling and loading of isoniazid. Hydrophobicity of chitosan microspheres increased on increasing the degree of cross‐linking and MW of chitosan. Chitosan microspheres with high degree of deacetylation (DDA) (75 wt%), high MW chitosan (2227 kg mol?1), and with 12 wt% concentration of glutaraldehyde showed optimum loading and release of isoniazid. The isoniazid from chitosan microspheres was released in two steps, i.e. burst (%RB) and controlled (%RC) steps. The microspheres with low MW chitosan (260 kg mol?1) and low DDA (48 wt%) showed prominent burst release of isoniazid, but microspheres with high MW chitosan (2227 kg mol?1) and high DDA (75 wt%) have released more isoniazid in a controlled manner (60 wt%) at 37°C in a solution of pH 5.0 ± 0.1. The burst step of drug release (%RB) has followed first order kinetics, whereas controlled step of drug release (%RC) followed zero order kinetics. The burst step of drug release was Fickian and controlled step was non‐Fickian in nature. The diffusion constant (D) for isoniazid release was influenced by the properties of chitosan and degree of cross‐linking. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献