首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One nanosecond molecular dynamics (MD) simulation was performed for two DNA segments each composed of 30 base pairs. In one DNA segment the native guanines at nucleotides positions 17 and 19 were replaced with two 8-oxoguanines (8-oxoG) (8-oxoG is mutagenic DNA oxo-lesion). The analysis of results was focused on the electrostatic energy that is supposed to be significant factor causing the disruption of DNA base stacking in DNA duplex and may also serve as a signal toward the repair enzyme informing the presence of the lesion. The repulsive interaction between 8-oxoG and the entire DNA molecule was observed, which caused the extrahelical position of 8-oxoG (position 19). The repulsive electrostatic interaction between both 8-oxoG lesions contributed to the flipping out of one 8-oxoG and to the local instability of the lesioned DNA region. The electrostatic potential at the surface of DNA close to the lesions has more negative value than the same region on the native DNA. This electrostatic potential may signal presence of the lesion to the repair enzyme. In the simulation of native DNA segment, no significant structural changes were observed and B-DNA structure was well preserved throughout the MD simulation.  相似文献   

2.
Clustered DNA damage sites induced by ionizing radiation have been suggested to have serious consequences to organisms, such as cancer, due to their reduced probability to be repaired by the enzymatic repair machinery of the cell. Although experimental results have revealed that clustered DNA damage sites effectively retard the efficient function of repair enzymes, it remains unclear as to what particular factors influence this retardation. In this study, approaches based on molecular dynamics (MD) simulation have been applied to examine conformational changes and energetic properties of DNA molecules containing clustered damage sites consisting of two lesioned sites, namely 7,8-dihydro-8-oxoguanine (8-oxoG) and apurinic/apyrimidinic (AP) site, located within a few base pairs of each other. After 1 ns of MD simulation, one of the six DNA molecules containing a clustered damage site develops specific characteristic features: sharp bending at the lesioned site and weakening or complete loss of electrostatic interaction energy between 8-oxoG and bases located on the complementary strand. From these results it is suggested that these changes would make it difficult for the repair enzyme to bind to the lesions within the clustered damage site and thereby result in a reduction of its repair capacity.  相似文献   

3.
Oxidation of free guanine and guanine in salmon testes ds-DNA by hydroxyl radicals generated with Fenton reagent resulted in oscillating 8-oxoguanine concentrations. These oscillations were superimposed on a general trend of decreasing ratio of [8-oxoguanine]/{[8-oxoguanine] + [guanine]} with time, suggesting that a steady state 8-oxoguanine concentration would not be achieved. Mass spectrometry detected 8-oxoguanine and 5-guanidinohydantoin as products, suggesting that the latter was the product of oxidation of 8-oxoguanine. Guanidinohydantoin and other possible intermediates and products may be involved in a complex mechanism leading to the observed behavior. Oscillatory fluctuations in 8-oxoguanine may need to be considered in assessing its clinical significance as a biomarker for oxidative DNA damage.  相似文献   

4.
The process by which DNA repair enzymes recognize and selectively excise damaged bases in duplex DNA is fundamental to our mechanistic understanding of these critical biological reactions. 8-Oxoguanine (8-oxoG) is the most common form of oxidative DNA damage; unrepaired, this lesion generates a G:C-->T:A mutation. Central to the recognition and repair of DNA damage is base extrusion, a process in which the damaged base lesion or, in some cases, its partner disengages from the helix and is bound to the enzyme's active site where base excision takes place. The conformation adopted by 8-oxoG in duplex DNA is affected by the base positioned opposite this lesion; conformational changes may also take place when the damaged base binds to its cognate repair enzyme. We performed unrestrained molecular dynamics simulations for several 13-mer DNA duplexes. Oligomers containing G:C and 8oxoG:C pairs adopted Watson-Crick geometries in stable B-form duplexes; 8oxoG showed increased local and global flexibility and a reduced barrier to base extrusion. Duplexes containing the G:A mismatch showed much larger structural fluctuations and failed to adopt a well-defined structure. For the 8oxoG:A mismatch that is recognized by the DNA glycosylase MutY, the damaged nucleoside underwent spontaneous and reproducible anti-->syn transitions. The syn conformation is thermodynamically preferred. Steric hindrance and unfavorable electrostatics associated with the 8oxoG O8 atom in the anti conformation were the major driving forces for this transition. Transition events follow two qualitatively different pathways. The overall anti-->syn transition rate and relative probability of the two transition paths were dependent on local sequence context. These simulations indicate that both the dynamic and equilibrium behavior of the duplex change as a result of oxidation; these differences may provide valuable new insight into the selective action of enzymes on damaged DNA.  相似文献   

5.
The molecular dynamics (MD) simulation of DNA mutagenic oxidative lesion, 7,8-dihydro-8-oxoguanine (8-oxoG), complexed with the repair enzyme, human oxoguanine glycosylase 1 (hOGG1), was performed for 1 nanosecond (ns) in order to describe the dynamical process of DNA-enzyme complex formation. After 900 picoseconds of MD the lesioned DNA and enzyme formed a complex that lasted until the end of the simulation at 1 ns. The complex was mainly represented by the overlapping van der Waals surfaces of DNA and enzyme molecules. The amino group of arginine 324 was located close to the phosphodiester bond of the nucleotide with 8-oxoG enabling chemical reactions between amino acid and lesion. The broken hydrogen bonds resulting in locally collapsed B-DNA structure were observed at the lesion site. The phosphodiester bond at C5' of 8-oxoG was displaced to the position close to the amino group of arginine 324. The water-mediated hydrogen bond network was formed in each contact area between DNA and enzyme, further enhancing the stability of the complex. In the background simulation of the identical molecular system with the native DNA, neither the complex nor the water- mediated hydrogen bond network was observed.  相似文献   

6.
8-oxo-7,8-dihydroguanine (8-oxo-G) in DNA is a mutagenic adduct formed by reactive oxygen species. In Escherichia coli, 2,6-dihydroxy-5N-formamidopyrimidine (Fapy)-DNA glycosylase (Fpg) removes this mutagenic adduct from DNA. In this report, we demonstrate base excision repair (BER) synthesis of DNA containing 8-oxo-G with Fpg in vitro. Fpg cut the oligonucleotide at the site of 8-oxo-G, producing one nucleotide gap with 3' and 5' phosphate termini. Next, 3' phosphatase(s) in the supernatant obtained by precipitating a crude extract of E. coli with 40% ammonium sulfate, removed the 3' phosphate group at the gap, thus exposing the 3' hydroxyl group to prime DNA synthesis. DNA polymerase and DNA ligase then completed the repair. These results indicate the biological significance of the glycosylase and apurinic/ apyrimidinic (AP) lyase activities of Fpg, in concert with 3' phosphatase(s) to create an appropriately gapped substrate for efficient BER synthesis of DNA containing 8-oxo-G.  相似文献   

7.
韩诗邈  赵丽萍  杨歌  屈锋 《色谱》2021,39(7):721-729
8-氧代鸟嘌呤DNA糖基化酶(OGG1)是人体中重要的功能蛋白,在修复DNA氧化性损伤过程中起关键作用。氧化应激等引起的氧化损伤易导致炎症反应的发生,对OGG1的抑制可以一定程度上起到缓解作用;对癌细胞OGG1的抑制有望作为癌症治疗的新方法。目前的研究多集中于小分子对OGG1功能的影响和调控,而OGG1的适配体筛选尚未见报道。作为功能配体,适配体具有合成简单、高亲和力及高特异性等优点。该文筛选了OGG1的核酸适配体,结合毛细管电泳高效快速的优点建立了两种基于毛细管电泳-指数富集进化(CE-SELEX)技术的筛选方法:同步竞争法和多轮筛选法。同步竞争法利用单链结合蛋白(SSB)与核酸库中单链核酸的强结合能力,与目标蛋白OGG1组成竞争体系,并通过增加SSB浓度来增加竞争筛选压力,以去除与OGG1弱结合的核酸序列,一步筛选即可获得与OGG1强结合的核酸序列。多轮筛选法在相同孵育条件和电泳条件下,经3轮筛选获得OGG1的核酸适配体。比较两种筛选方法的筛选结果,筛选结果中频次最高的3条候选核酸适配体序列一致,其解离常数(KD)值在1.71~2.64 μmol/L之间。分子对接分析结果表明候选适配体1(Apt 1)可能与OGG1中具有修复氧化性损伤功能的活性口袋结合。通过对两种筛选方法的对比,证明同步竞争法更加快速高效,对其他蛋白核酸适配体筛选方法的选择具有一定的指导意义。得到的适配体有望用于OGG1功能调控,以抑制其修复功能。  相似文献   

8.
The integrity of the genetic information in all living organisms is constantly threatened by a variety of endogenous and environmental insults. To counter this risk, the DNA-damage response is employed for repairing lesions and maintaining genomic integrity. However, an aberrant DNA-damage response can potentially lead to genetic instability and mutagenesis, carcinogenesis, or cell death. To directly monitor DNA damage events in the context of native DNA, we have designed two new sensors utilizing genetically fragmented firefly luciferase (split luciferase). The sensors are comprised of a methyl-CpG binding domain (MBD) attached to one fragment of split luciferase for localizing the sensor to DNA (50-80% of the CpG dinucleotide sites in the genome are symmetrically methylated at cytosines), while a damage-recognition domain is attached to the complementary fragment of luciferase to probe adjacent nucleotides for lesions. Specifically, we utilized oxoguanine glycosylase 1 (OGG1) to detect 8-oxoguanine caused by exposure to reactive oxygen species and employed the damaged-DNA binding protein 2 (DDB2) for detection of pyrimidine dimer photoproducts induced by UVC light. These two sensors were optimized and validated using oligonucleotides, plasmids, and mammalian genomic DNA, as well as HeLa cells that were systematically exposed to a variety of environmental insults, demonstrating that this methodology utilizing MBD-directed DNA localization provides a simple, sensitive, and potentially general approach for the rapid profiling of specific chemical modifications associated with DNA damage and repair.  相似文献   

9.
7,8-Dihydro-8-oxoguanine (oh8Gua) endonuclease is a DNA repair enzyme in Escherichia coli to remove oh8Gua, a promutagenic DNA adduct. Due to the unique mode of enzyme action and substrate specificity, this DNA repair enzyme has been suggested to be identical to 2,6-diamino-4-hydroxyformamidopyrimidine (Fapy)-DNA glycosylase (Fpg). However, oh8Gua endonuclease had not been definitely identified because it had not been homogeneously purified. In this study, we attempted to purify and identify the enzyme. Through several purification procedures, we obtained two proteins (32 kD and 29 kD). The larger protein co-migrated with Fpg in 12% SDS-PAGE gel. Sequences of N-terminal amino acids of these two proteins were identical to that of Fpg; the smaller one is a degraded product of oh8Gua endonuclease during purification steps. These results indicate that oh8Gua endonuclease is identical to Fpg, implying that oh8Gua in oxidatively damaged DNA rather than Fapy is more physiologically relevant substrate for Fpg.  相似文献   

10.
Reactive oxygen species (ROS) are continuously produced in living cells due to metabolic and biochemical reactions and due to exposure to physical, chemical and biological agents. Excessive ROS cause oxidative stress and lead to oxidative DNA damage. Within ROS-mediated DNA lesions, 8-oxoguanine (8-oxoG) and its nucleotide 8-oxo-2′-deoxyguanosine (8-oxodG)—the guanine and deoxyguanosine oxidation products, respectively, are regarded as the most significant biomarkers for oxidative DNA damage. The quantification of 8-oxoG and 8-oxodG in urine, blood, tissue and saliva is essential, being employed to determine the overall effects of oxidative stress and to assess the risk, diagnose, and evaluate the treatment of autoimmune, inflammatory, neurodegenerative and cardiovascular diseases, diabetes, cancer and other age-related diseases. High-performance liquid chromatography with electrochemical detection (HPLC–ECD) is largely employed for 8-oxoG and 8-oxodG determination in biological samples due to its high selectivity and sensitivity, down to the femtomolar range. This review seeks to provide an exhaustive analysis of the most recent reports on the HPLC–ECD determination of 8-oxoG and 8-oxodG in cellular DNA and body fluids, which is relevant for health research.  相似文献   

11.
Telomeres at the ends of human chromosomes contain the repeating sequence 5'-d[(TTAGGG)(n)]-3'. Oxidative damage of guanine in DNAs that contain telomeric and nontelomeric sequence generates 7,8-dihydro-8-oxoguanine (8OG) preferentially in the telomeric segment, because GGG sequences are more reactive in duplex DNA. We have developed a general strategy for probing site-specific oxidation reactivity in diverse biological structures through substitution of minimally modified building blocks that are more reactive than the parent residue, but preserve the parent structure. In this study, 8OG was substituted for guanine at G(8), G(9), G(14), or G(15) in the human telomeric oligonucleotide 5'-d[AGGGTTAG(8)G(9)GTT AG(14)G(15)GTTAGGGTGT]-3'. Replacement of G by 8OG in telomeric DNA can affect the formation of intramolecular G quadruplexes, depending on the position of substitution. When 8OG was incorporated in the 5'-position of a GGG triplet, G quadruplex formation was observed; however, substitution of 8OG in the middle of a GGG triplet produced multiple structures. A clear correspondence between structure and reactivity was observed when oligonucleotides containing 8OG in the 5'-position of a GGG triplet were prepared in the quadruplex or duplex forms and interrogated by mediated electrocatalytic oxidation with Os(bpy)(3)(2+) (bpy = 2,2'-bipyridine). The rate constant for one-electron oxidation of a single 8OG in the 5'-position of a GGG triplet was (6.2 +/- 1.7) x 10(4) M(-1) s(-1) in the G quadruplex form. The rate constant was 2-fold lower for the same telomeric sequence in the duplex form ((3.0 +/- 1.3) x 10(4) M(-1) s(-1)). The position of 8OG in the GGG triplet affects telomerase activity and synthesis of telomeric repeat products. Telomerase activity was decreased significantly when 8OG was substituted in the 5'-position of the GGG triplet, but not when 8OG was substituted in the middle of the triplet. Thus, biological oxidation of G to 8OG in telomeres has the potential to modulate telomerase activity. Further, small molecules that inhibit telomerase by stabilizing telomeric G quadruplexes may not be as effective under oxidative stress.  相似文献   

12.
The OGG1 proteins are DNA N-glycosylases-apurinic-apyrimidinic lyases that are responsible for the removal of 8-oxo-7,8-dihydroguanine (8-oxoG) base in DNA. The human enzyme (hOGG1) is a monomer of 345 amino acids containing 10 buried tryptophan (Trp) residues that are very sensitive to UVB irradiation. The photolysis quantum yield of these Trp residues is about 0.3 and 0.1 in argon- and air-saturated solutions, respectively. Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry shows that several cleavage sites are identical under aerobic and anaerobic photolysis of Trp residues; one of them includes the active site. Western blots and polyacrylamide gel electrophoresis indicate that fragments of high molecular size are also formed. In addition to common photochemical paths with argon-saturated solutions, specific reactions occur in air-saturated solutions of hOGG1. The photolysis rate is inhibited by more than 50% on binding of hOGG1 to a 34mer oligonucleotide containing a single 8-oxoG-C base pair. Binding to the oligonucleotide with 8-oxoG-C induced a 20% quenching of the hOGG1 fluorescence, suggesting interaction of nucleic acid bases with the Trp residue(s) responsible for the photolysis. Using 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (Me-FapyG) and 8-oxoG as substrates, it is shown that protein photolysis induces photoinactivation of the DNA N-glycosylase activities. The excision of 8-oxoG is more affected than that of Me-FapyG at the same dose of UVB irradiation under both air and argon conditions. Besides the role of Trp residues, the possible involvement of Cys 253 in the photoinactivation process of hOGG1 is discussed.  相似文献   

13.
Photolysis of a 4'-pivaloyl-substituted nucleotide in single- and double-stranded DNA (1) generated an enol ether radical cation 4 that was reduced to enol ether 17 by electron transfer from the nearest guanoside (G). Variation of the nucleotide sequence demonstrated a strong distance dependence of this electron-transfer rate with beta = 1.0 +/- 0.1 A(-1). When 8-oxoguanosine (G(oxo)) was used as the electron donor, the rate of the electron transfer increased by a factor of 4 but the distance dependence of the transfer remained unchanged within experimental error. In single strands, the number of intervening A, T, and C nucleotides had a much smaller effect; the rate remained nearly constant for two, three, or four intervening nucleotides. This is explained by the flexibility of the single-stranded oligonucleotides.  相似文献   

14.
Ultrafast structural dynamics concomitant to excitation energy transfer in DNA has been studied using a pair of pyrene-labeled DNA bases. The temporal evolution of the femtosecond pump-probe spectra reveals the existence of two electronic coupling pathways, through-base stack and through-space, which lead to excitation energy transfer and excimer formation even when the labeled DNA bases are separated by one AT base pair. The electronic coupling which mediates through-base stack energy transfer is so strong that a new absorption band arises in the excited-state absorption spectrum within 300 fs. From the analysis of time-dependent spectral shifts due to through-space excimer formation, the local structural dynamics and flexibility of DNA are characterized on the picosecond and nanosecond time scale.  相似文献   

15.
Structural Chemistry - The cytotoxic activities of KP1019 and other Ru(III) drugs are believed to be associated with their binding with DNA. Here, we report the density functional theory (DFT)...  相似文献   

16.
 Among the DNA lesions induced by ionising radiation, one of the most abundant base modifications is that of guanine (G) into 8-oxo-7-hydro-2′-deoxyguanosine (oxoG). The Escherichia coli lac operator–lac repressor complex bearing one or several oxoG was studied by molecular modelling. The initial structure of the complex was obtained from the Protein Data Bank (1CJG entry – model 1). Systematic replacements of G by oxoG were carried out. Modelling involved energy-minimisation and simulated-annealing techniques using the Amber force field. Depending on its location along the DNA sequence, oxoG induces modifications of the energetic characteristics of the complex, the electrostatic potential distribution on the surfaces of the DNA and of the protein, the DNA and protein conformations and DNA and protein flexibility. In the case of the replacement of G by oxoG at position 8 of the fragment, the most noticeable effects are a 13% decrease in the interaction energy and a 14% reduction in the number of intermolecular hydrogen bonds, all other effects being much weaker. Therefore, we may conclude that the presence of one or several such base modifications is insufficient to account, alone, for the experimental observation of the radiation-induced decrease of lac operator–lac repressor binding extent. Received: 20 July 2000 / Accepted: 5 January 2001 / Published online: 3 April 2001  相似文献   

17.
Reactions of peroxynitrite with guanine were investigated using density functional theory (B3LYP) employing 6-31G** and AUG-cc-pVDZ basis sets. Single point energy calculations were performed at the MP2/AUG-cc-pVDZ level. Genuineness of the calculated transition states (TS) was tested by visually examining the vibrational modes corresponding to the imaginary vibrational frequencies and applying the criterion that the TS properly connected the reactant and product complexes (PC). Genuineness of all the calculated TS was further ensured by intrinsic reaction coordinate (IRC) calculations. Effects of aqueous media were investigated by solvating all the species involved in the reactions using the polarizable continuum model (PCM). The calculations reveal that the most stable nitro-product complex involving the anion of 8-nitroguanine and a water molecule i.e. 8NO(2)G(-) + H(2)O can be formed according to one reaction mechanism while there are two possible reaction mechanisms for the formation of the oxo-product complex involving 8-oxoguanine and anion of the NO(2) group i.e. 8OG + NO(2)(-). The calculated relative stabilities of the PC, barrier energies of the reactions and the corresponding enthalpy changes suggest that formation of the complex 8OG + NO(2)(-) would be somewhat preferred over that of the complex 8NO(2)G(-) + H(2)O. The possible biological implications of this result are discussed.  相似文献   

18.
An asymptotic series for the electrostatic energy E1(N){\mathcal{E}_1(N)} of an N-gonal charge distribution, i.e., a set of unit charges occupying vertices of a regular N-gon with a unit circumradius, is derived. Application of Padé approximants to truncations of this expansion produces compact approximate formulae capable of estimating E1(N){\mathcal{E}_1(N)} with great accuracy. A closed-form expression for the energy of electrostatic interaction of two polygonal charge distributions is obtained from the respective Fourier series. The availability of this expression allows for a rapid calculation of the relevant energy with computational effort independent of the numbers of particles involved.  相似文献   

19.
The electrochemical oxidation of 8-oxoguanine (8-oxoG) in the presence of uric acid (UA) was studied by differential pulse voltammetry over a wide pH range (1-12). The results showed that both compounds follow a pH-dependent oxidation mechanism that involves two electrons and two protons corresponding to reversible charge transfer reactions. The difference between the peak potential for the oxidation of each analyte was found to be always less than 100 mV over the whole pH range, the separation being greater in the pH interval 4-7. In mixtures of both analytes, pH 6 was shown to be the best for 8-oxoG determination in the presence of uric acid, since the peak current is higher and a greater peak separation is achieved.  相似文献   

20.
张千慧  王阳  刘翠  杨忠志 《化学学报》2014,72(8):956-962
遗传信息的完整性不断受氧化基因的威胁,7,8-二氢-8-氧鸟嘌呤(8-oxo-G)是氧化DNA损伤最常见的产物. 氧化碱基会引起基因突变、癌变及衰老等. 应用量子化学方法分析得出:鸟嘌呤(G)被氧化为8-oxo-G后,其电荷分布、氢键的供体和受体位点的数目和位置随之改变,N7和O6原子所带的电荷变得更负,使得它们作为氢键供体的能力增强. 从而G被误认为其他碱基,与正常碱基形成多种氢键复合物. 可将8-oxo-G划分为3个作用位点与正常碱基相互作用. 与正常的单体相比,碱基对中形成氢键的受体原子上所带电荷平均变负0.05e,占原电荷的8%; 供体H原子所带电荷平均变正0.02e,占原电荷的4%. 1位点与正常碱基作用形成的氢键复合物更稳定,2位点和3位点性质相似,水溶剂使碱基对的结合能力减弱,其中与C作用形成氢键复合物的结合能减弱程度最大,且使碱基对结合能力的次序改变. 在8-oxo-G导致的GC→TA突变中,亲核反应位点从G所在链转到A(C)所在链,影响酶对碱基的识别,从而产生基因突变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号