首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have been performing Λ hypernuclear spectroscopic experiments by the (e,e′K +) reaction since 2000 at Thomas Jefferson National Accelerator Facility (JLab). The (e,e′K +) experiment can achieve a few 100 keV (FWHM) energy resolution compared to a few MeV (FWHM) by the (K ?, π ?) and (π +, K +) experiments. Therefore, more precise Λ hypernuclear structures can be investigated by the (e,e′K +) experiment. ${^{7}_{\Lambda}{\rm He}}$ , ${^{9}_{\Lambda}{\rm Li}}$ , ${^{10}_{\Lambda}{\rm Be}}$ , ${^{12}_{\Lambda}{\rm B}}$ , ${^{28}_{\Lambda}{\rm Al}}$ , and ${^{52}_{\Lambda}{\rm V}}$ were measured in the experiment at JLab Hall-C. In addition, ${^{9}_{\Lambda}{\rm Li}}$ , ${^{12}_{\Lambda}{\rm B}}$ , and ${^{16}_{\Lambda}{\rm N}}$ were measured in the experiment at JLab Hall-A.  相似文献   

2.
The space \({\mathcal{D}_\Gamma^\prime}\) of distributions having their wavefront sets in a closed cone \({\Gamma}\) has become important in physics because of its role in the formulation of quantum field theory in curved spacetime. In this paper, the topological and bornological properties of \({\mathcal{D}_\Gamma^\prime}\) and its dual \({\mathcal{E}_\Lambda^\prime}\) are investigated. It is found that \({\mathcal{D}_\Gamma^\prime}\) is a nuclear, semi-reflexive and semi-Montel complete normal space of distributions. Its strong dual \({\mathcal{E}_\Lambda^\prime}\) is a nuclear, barrelled and (ultra)bornological normal space of distributions which, however, is not even sequentially complete. Concrete rules are given to determine whether a distribution belongs to \({\mathcal{D}_\Gamma^\prime}\) , whether a sequence converges in \({\mathcal{D}_\Gamma^\prime}\) and whether a set of distributions is bounded in \({\mathcal{D}_\Gamma^\prime}\) .  相似文献   

3.
We have investigated theoretically a feasible nuclear reaction to produce light double-Λ hypernuclei by choosing a suitable target. In the reaction from stopped Ξ ? on 6Li target light doubly-strange nuclei, ${^5_{\Lambda\Lambda}{\rm H}}$ and ${^6_{\Lambda\Lambda}{\rm He}}$ , are produced: we have calculated the formation ratio of ${^5_{\Lambda\Lambda}{\rm H}}$ to ${^6_{\Lambda\Lambda}{\rm He}}$ for Ξ ? absorptions from 2S, 2P and 3D orbitals of Ξ ?6Li atom by assuming a d?α cluster model for 6Li. From this cluster model the d?α relative wave functions has a node due to Pauli exclusion among nucleons belonging to d and α clusters. Two kinds of d?α wave functions, namely 1s relative wave function with a phenomenological one-range Gaussian (ORG) potential and that of an orthogonality-condition model (OCM) are used. It is found that the probability of ${^5_{\Lambda\Lambda}{\rm H}}$ formation is larger than that of ${^6_{\Lambda\Lambda}{\rm He}}$ for all absorption orbitals: in the case of the major 3D absorption their ratio is 1.08 for ORG and 1.96 for OCM. The dominant low momentum component of the d?α relative wave function favors the ${^5_{\Lambda\Lambda}{\rm H}}$ formation with a low Q value compared to the ${^6_{\Lambda\Lambda}{\rm He}}$ formation with a high Q value. We have also calculated momentum distributions of emitted particles, d and n, displaying continuum spectra for single-Λ hypernuclei, ${^4_{\Lambda}{\rm H}}$ and ${^5_{\Lambda}{\rm He}}$ , and line spectra for the ${^5_{\Lambda\Lambda}{\rm H}}$ and ${^6_{\Lambda\Lambda}{\rm He}}$ nuclei. Thus, our present theoretical analysis would be a significant contribution to experiments in the strangeness ?2 sector of hypernuclear physics.  相似文献   

4.
The parity-violating Lagrangian of the weak nucleon-nucleon (NN) interaction in the pionless effective field theory (EFT( \({/\!\!\!\pi}\) )) approach contains five independent unknown low-energy coupling constants (LECs). The photon asymmetry with respect to neutron polarization in \({np\rightarrow d\gamma A_\gamma^{np}}\) , the circular polarization of outgoing photon in \({np\rightarrow d\gamma P_\gamma^{np}}\) , the neutron spin rotation in hydrogen \({\frac{1}{\rho}\frac{d\phi^{np}}{dl}}\) , the neutron spin rotation in deuterium \({\frac{1}{\rho}\frac{d\phi^{nd}}{dl}}\) and the circular polarization of γ-emission in \({nd\rightarrow}\) 3 \({P^{nd}_\gamma}\) are the parity-violating observables which have been recently calculated in terms of parity-violating LECs in the EFT( \({/\!\!\!\pi}\) ) framework. We obtain the LECs by matching the parity-violating observables to the Desplanques, Donoghue, and Holstein (DDH) best value estimates. Then, we evaluate photon asymmetry with respect to the neutron polarization \({a^{nd}_\gamma}\) and the photon asymmetry in relation to deuteron polarization \({A^{nd}_\gamma}\) in \({nd\rightarrow}\) 3 process. We finally compare our EFT( \({/\!\!\!\pi}\) ) photon asymmetries results with the experimental values and the previous calculations based on the DDH model.  相似文献   

5.
The primary goal of KamLAND is a search for the oscillation of \({\bar{\nu }}_\mathrm{e}\) ’s emitted from distant power reactors. The long baseline, typically 180 km, enables KamLAND to address the oscillation solution of the “solar neutrino problem” with \({\bar{\nu }}_{e} \) ’s under laboratory conditions. KamLAND found fewer reactor \({\bar{\nu }}_{e} \) events than expected from standard assumptions about \(\overline{\nu }_e\) propagation at more than 9 \(\sigma \) confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at more than 5 \(\sigma \) C.L., and prefers the distortion from neutrino oscillation effects. A three-flavor oscillation analysis of the data from KamLAND and KamLAND + solar neutrino experiments with CPT invariance, yields \(\Delta m_{21}^2 \) = [ \(7.54_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) , \(7.53_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) ], tan \(^{2}\theta _{12}\) = [ \(0.481_{-0.080}^{+0.092} \) , \(0.437_{-0.026}^{+0.029} \) ], and sin \(^{2}\theta _{13}\) = [ \(0.010_{-0.034}^{+0.033} \) , \(0.023_{-0.015}^{+0.015} \) ]. All solutions to the solar neutrino problem except for the large mixing angle region are excluded. KamLAND also demonstrated almost two cycles of the periodic feature expected from neutrino oscillation effects. KamLAND performed the first experimental study of antineutrinos from the Earth’s interior so-called geoneutrinos (geo \({\bar{\nu }}_{e} \) ’s), and succeeded in detecting geo \({\bar{\nu }}_{e} \) ’s produced by the decays of \(^{238}\) U and \(^{232}\) Th within the Earth. Assuming a chondritic Th/U mass ratio, we obtain \(116_{-27}^{+28} {\bar{\nu }}_{e}\) events from \(^{238}\) U and \(^{232}\) Th, corresponding a geo \({\bar{\nu }}_{e}\) flux of \(3.4_{-0.8}^{+0.8}\times \) 10 \(^{6}\) cm \(^{-2}\)  s \(^{-1}\) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo \({\bar{\nu }}_{e} \) rate.  相似文献   

6.
Chemiluminescence experiments have been performed to assess the state of current $\mathrm{CO}_{2}^{*}$ kinetics modeling. The difficulty with modeling $\mathrm{CO}_{2}^{*}$ lies in its broad emission spectrum, making it a challenge to isolate it from background emission of species such as CH? and CH2O?. Experiments were performed in a mixture of 0.0005H2+0.01N2O+0.03CO+0.9595Ar in an attempt to isolate $\mathrm{CO}_{2}^{*}$ emission. Temperatures ranged from 1654 K to 2221 K at two average pressures, 1.4 and 10.4 atm. The unique time histories of the various chemiluminescence species in the unconventional mixture employed at these conditions allow for easy identification of the $\mathrm{CO}_{2}^{*}$ concentration. Two different wavelengths to capture $\mathrm{CO}_{2}^{*}$ were used; one optical filter was centered at 415 nm and the other at 458 nm. The use of these two different wavelengths was done to verify that broadband $\mathrm{CO}_{2}^{*}$ was in fact being captured, and not emission from other species such as CH? and CH2O?. As a baseline for time history and peak magnitude comparison, OH? emission was captured at 307 nm simultaneously with the two $\mathrm{CO}_{2}^{*}$ filters. The results from the two $\mathrm{CO}_{2}^{*}$ filters were consistent with each other, implying that indeed the same species (i.e., $\mathrm{CO}_{2}^{*}$ ) was being measured at both wavelengths. A first-generation kinetics model for $\mathrm{CO}_{2}^{*}$ and CH2O? was developed, since no comprehensively validated one exists to date. CH2O? and CH? were ruled out as being present in the experiments at any measurable level, based on calculations and comparisons with the data. Agreement with the $\mathrm{CO}_{2}^{*}$ model was only fair, which necessitates future improvements for a better understanding of $\mathrm{CO}_{2}^{*}$ chemiluminescence as well as the kinetics of the ground state species.  相似文献   

7.
Trivalent holmium-doped K–Sr–Al phosphate glasses ( $\mathrm{P}_{2}\mathrm{O}_{5}$ $\mathrm{K}_{2}\mathrm{O}$ –SrO– $\mathrm{Al}_{2}\mathrm{O}_{3}$ $\mathrm{Ho}_{2}\mathrm{O}_{3}$ ) were prepared, and their spectroscopic properties have been evaluated using absorption, emission, and excitation measurements. The Judd–Ofelt theory has been used to derive spectral intensities of various absorption bands from measured absorption spectrum of 1.0 mol% $\mathrm{Ho}_{2}\mathrm{O}_{3}$ -doped K–Sr–Al phosphate glass. The Judd–Ofelt intensity parameters ( $\varOmega_{\lambda}$ , $\times10^{-20}~\mathrm{cm}^{2}$ ) have been determined of the order of $\varOmega_{2} = 11.39$ , $\varOmega_{4} = 3.59$ , and $\varOmega_{6} = 2.92$ , which in turn used to derive radiative properties such as radiative transition probability, radiative lifetime, branching ratios, etc. for excited states of $\mathrm{Ho}^{3+}$ ions. The radiative lifetimes for the ${}^{5}F_{4}$ , ${}^{5}S_{2}$ , and ${}^{5}F_{5}$ levels of $\mathrm{Ho}^{3+}$ ions are found to be 169, 296, and 317 μs, respectively. The stimulated emission cross-section for 2.05-μm emission was calculated by the McCumber theory and found to be $9.3\times10^{-2 1}~\mathrm{cm}^{2}$ . The wavelength-dependent gain coefficient with population inversion rate has been evaluated. The results obtained in the titled glasses are discussed systematically and compared with other $\mathrm{Ho}^{3+}$ -doped systems to assess the possibility for visible and infrared device applications.  相似文献   

8.
We demonstrate a Doppler cooling and detection scheme for ions with low-lying D levels which almost entirely suppresses scattered laser light background, while retaining a high fluorescence signal and efficient cooling. We cool a single ion with a laser on the $^{2}\mathrm{S}_{\mbox{\tiny$1/2$}}\leftrightarrow {^{2}\mathrm{P}}_{\mbox{\tiny$1/2$}}$ transition as usual, but repump via the $^{2}\mathrm{P}_{\mbox{\tiny$3/2$}}$ level. By filtering out light on the cooling transition and detecting only the fluorescence from the $^{2}\mathrm{P}_{\mbox{\tiny$3/2$}}\rightarrow {^{2}\mathrm{S}}_{\mbox{\tiny$1/2$}}$ decays, we suppress the scattered laser light background count rate to 1 s?1 while maintaining a signal of 29000 s?1 with moderate saturation of the cooling transition. This scheme will be particularly useful for experiments where ions are trapped in close proximity to surfaces, such as the trap electrodes in microfabricated ion traps, which leads to high background scatter from the cooling beam.  相似文献   

9.
The presence of a narrow peak in the $ \Lambda$ p invariant-mass distribution observed in the $ \bar{{p}}$ annihilation reaction at rest $\ensuremath \bar{p} {}^4\mathrm{He}\rightarrow p\pi^-p\pi^+\pi^-n X$ is discussed again through an analysis procedure which improves the ratio signal/background in comparison with the previous analysis. The peak is centred at 2223.2±3.2stat±1.2syst MeV and has a statistical significance of 4.7 $ \sigma$ , values compatible with those published previously. If interpreted as the result of the decay into $ \Lambda$ p of a $\ensuremath { }_{\bar{K}}{}^2\mathrm{H}$ bound system, the corresponding binding energy should be B = - 151.0±3.2stat±1.2syst MeV and the width $ \Gamma_{{FWHM}}^{}$ < 33.9±6.2 MeV. The production rate has a lower limit of 1.2 10-4. Data on the $ \bar{{p}}$ annihilation reaction at rest $ \bar{{p}}$ 4He $ \rightarrow$ p $ \pi^{-}_{}$ p $ \pi^{-}_{}$ p s X , analyzed for the first time, lead to a result in qualitative agreement with the previous one.  相似文献   

10.
Femtosecond (fs) laser pulses at variable delay times allowed us to track the fast non-radiative transitions between the manifold of highly excited $\mathrm{M}_{\mathrm{Na}}^{**}$ states to the lower lying fluorescent $\mathrm{M}_{\mathrm{Na}}^{*}$ state in CaF2. Two distinct $\mathrm{M}_{\mathrm{Na}}^{**}$ states of the manifold at 3.16?eV ( $\mathrm{M}_{\mathrm{Na}2}^{**}$ ) and 4.73?eV ( $\mathrm{M}_{\mathrm{Na}3}^{**}$ ) were populated using the second (SH) and third harmonics (TH) of fs laser light at 785?nm. The population kinetics of the fluorescent $\mathrm{M}_{\mathrm{Na}}^{*}$ state in the 2?eV excitation energy range was revealed by depleting its fluorescence centered at 740?nm using fundamental near infrared (NIR) fs laser pulses. The related time constants for $\mathrm{M}_{\mathrm{Na}2,3}^{**}{\sim}{>} \mathrm{M}_{\mathrm{Na}}^{*}$ relaxation amounted to 1.0±0.14?ps and 3.0±0.3?ps upon SH and TH excitation, respectively.  相似文献   

11.
We report connection conductivity ( \(C_{\rm c}\) ) of adhesive which including \(\hbox {In}_2\hbox {O}_3\) \(\hbox {SnO}_2\) (ITO) particles developed for fabrication of stacked-type-multi-junction solar cells. The commercial 20- \(\upmu \) m sized ITO particles were heated in vacuum at temperature ranging from 800 to 1,300  \(^{\circ }{\rm C}\) for 10 min to increase \(C_{\rm c}\) . 6.2 wt% ITO particles were dispersed in commercial Cemedine adhesive gel to form 100 samples structured with n-type Si/adhesive/n-type Si (n-Si sample) and p-type Si/adhesive/p-type Si (p-Si sample). Current density as a function of voltage (J–V) characteristics gave \(C_{\rm c}\) . It ranged from 4.3 to 1.0 S/cm \(^2\) for the n-Si sample with 800 \(^{\circ }{\rm C}\) heat-treated ITO particles. Its standard deviation was 0.59 S/cm \(^2\) . On the other hand, it ranged from 2.0 to 0.6 S/cm \(^2\) for the p-Si sample with 800  \(^{\circ }{\rm C}\) heat-treated ITO particles. Its standard deviation was 0.22 S/cm \(^2\) . The distribution of \(C_{\rm c}\) mainly resulted from contact efficiency of ITO particles to substrate. We theoretically estimated that present \(C_{\rm c}\) achieved a low loss of the power conversion efficiency ( \(E_{\rm ff}\) ) lower than 0.3 % in the application of fabrication of multi-junction solar cell with an intrinsic \(E_{\rm ff}\) of 30 % and an open circuit voltage above 1.9 V.  相似文献   

12.
The variation of two-photon absorption (TPA) coefficient \(\beta _{\mathrm{TPA}} (\omega )\) of Si excited at difference photon energy was investigated. The TPA coefficient was measured by using a picosecond pulsed laser with the wavelength could be tuned in a wide photon-energy range. An equivalent RC circuit model was adapted to derive the TPA coefficient \(\beta _{\mathrm{TPA}} (\omega )\) . The results showed that \(\beta _{\mathrm{TPA}} (\omega )\) varied from \(4.2 \times 10^{-4}\) to \(1.17 \times 10^{-3 }\)  cm/GW in the transparent wavelength region \(1.80<\lambda <1.36\,\upmu \) m of Si. The increasing tendency of \(\beta _{\mathrm{TPA}} (\omega )\) with the incident photon energy can be qualitatively interpreted as the photon energy increases from \(E_{\mathrm{ig}}/2\) to nearly \(E_{\mathrm{ig}}\) , the electrons excited from the valance band find an increasing availability of conduction band states. Comparing with the high-energy side transitions, the TPA coefficient in low-energy side is about 10 times too small. This can be attributed that the TPA transition in low-energy side is the process of photon-assisted electron transitions from valence to conduction band occurring between different points in k-space, while is direct transition in high-energy side.  相似文献   

13.
Emiko Hiyama 《Few-Body Systems》2012,53(3-4):189-236
Recent development in the study of the structure of light Λ and double Λ hypernuclei is reviewed from the view point of few-body problems and interactions between the constituent particles. In the study the present author and collaborators employed Gaussian expansion method for few-body calculations; the method has been applied to many kinds of few-body systems in the fields of nuclear physics and exotic atomic/molecular physics. We reviewed the following subjects studied using the method: (1) Precise three- and four-body calculations of ${^7_{\Lambda}{\rm He}}$ , ${^7_{\Lambda}{\rm Li}}$ , ${^7_{\Lambda}{\rm Be}}$ , ${^8_{\Lambda}{\rm Li}}$ , ${^8_{\Lambda}{\rm Be}}$ , ${^9_{\Lambda}{\rm Be}}$ , ${^{10}_{\Lambda}{\rm Be}}$ , ${^{10}_{\Lambda}{\rm B}}$ and ${^{13}_{\Lambda}{\rm C}}$ provide important information on the spin structure of the underlying Λ N interaction by comparing the calculated results with the recent experimental data by γ-ray hypernuclear spectroscopy. (2) The Λ-Σ coupling effect was investigated in ${^4_{\Lambda}{\rm H}}$ and ${^4_{\Lambda}{\rm He}}$ on the basis of the N?+?N?+?N?+?Λ (Σ) four-body model. (3) A systematic study of double-Λ hypernuclei and the Λ Λ interaction, based on the NAGARA event data ( ${^6_{\Lambda\Lambda}{\rm He}}$ ), was performed within the α +?x?+?Λ +?Λ cluster model (x = n, p, d, t,3He and α) and α +?α +?n?+?Λ +?Λ cluster model, (4) The Demachi-Yanagi event was interpreted as observation of the 2+ state of ${^{10}_{\Lambda \Lambda}{\rm Be}}$ , (5) The Hida event was interpreted as observation of the ground state of ${^{11}_{\Lambda \Lambda}{\rm Be}}$ .  相似文献   

14.
We rely on a recent method for determining edge spectra and we use it to compute the Chern numbers for Hofstadter models on the honeycomb lattice having rational magnetic flux per unit cell. Based on the bulk-edge correspondence, the Chern number \(\sigma _\mathrm{H}\) is given as the winding number of an eigenvector of a \(2 \times 2\) transfer matrix, as a function of the quasi-momentum \(k\in (0,2\pi )\) . This method is computationally efficient (of order \(\mathcal {O}(n^4)\) in the resolution of the desired image). It also shows that for the honeycomb lattice the solution for \(\sigma _\mathrm{H}\) for flux \(p/q\) in the \(r\) -th gap conforms with the Diophantine equation \(r=\sigma _\mathrm{H}\cdot p+ s\cdot q\) , which determines \(\sigma _\mathrm{H}\mod q\) . A window such as \(\sigma _\mathrm{H}\in (-q/2,q/2)\) , or possibly shifted, provides a natural further condition for \(\sigma _\mathrm{H}\) , which however turns out not to be met. Based on extensive numerical calculations, we conjecture that the solution conforms with the relaxed condition \(\sigma _\mathrm{H}\in (-q,q)\) .  相似文献   

15.
Given a conformal QFT local net of von Neumann algebras ${\mathcal {B}_2}$ on the two-dimensional Minkowski spacetime with irreducible subnet ${\mathcal {A} \otimes \mathcal {A}}$ , where ${\mathcal {A}}$ is a completely rational net on the left/right light-ray, we show how to consistently add a boundary to ${\mathcal {B}_2}$ : we provide a procedure to construct a Boundary CFT net ${\mathcal {B}}$ of von Neumann algebras on the half-plane x >  0, associated with ${\mathcal {A}}$ , and locally isomorphic to ${\mathcal {B}_2}$ . All such locally isomorphic Boundary CFT nets arise in this way. There are only finitely many locally isomorphic Boundary CFT nets and we get them all together. In essence, we show how to directly redefine the C* representation of the restriction of ${\mathcal {B}_2}$ to the half-plane by means of subfactors and local conformal nets of von Neumann algebras on S 1.  相似文献   

16.
We show that the Kadison–Singer problem, asking whether the pure states of the diagonal subalgebra \({\ell^\infty\mathbb{N}\subset \mathcal{B}(\ell^2\mathbb{N})}\) have unique state extensions to \({\mathcal{B}(\ell^2\mathbb{N})}\) , is equivalent to a similar statement in II1 factor framework, concerning the ultrapower inclusion \({D^\omega \subset R^\omega}\) , where D is the Cartan subalgebra of the hyperfinite II1 factor R (i.e., a maximal abelian *-subalgebra of R whose normalizer generates R, e.g. \({D=L^\infty([0, 1]^{\mathbb{Z}}) \subset L^\infty([0,1]^{\mathbb{Z}} \rtimes \mathbb{Z} = R)}\) , and ω is a free ultrafilter. Instead, we prove here that if A is any singular maximal abelian *-subalgebra of R (i.e., whose normalizer consists of the unitary group of A, e.g. \({A=L(\mathbb{Z})\subset L^\infty([0,1]^\mathbb{Z})\rtimes \mathbb{Z}=R}\) ), then the inclusion \({A^\omega \subset R^\omega}\) does satisfy the Kadison–Singer property.  相似文献   

17.
A three-body calculation for the \({^4_{\Lambda} \rm{He}}\) and \({^6_{\Lambda}{\rm H}}\) hypernuclei has been undertaken. The respective cores are \({^4_{\Lambda}{\rm H}}\) . The interactions in the \({^6_{\Lambda}{\rm He}}\) system, modeled as \({^4_{\Lambda} {\rm H+p+n}}\) , are reasonably well known. For example, the p n interaction is well determined by the p n scattering data, the \({^4_{\Lambda}{\rm H}}\) p interaction can be fitted to the \({^5_{\Lambda}{\rm He}}\) binding energy. The \({^4_{\Lambda}{\rm He}}\) n interaction can be fitted to α–n scattering data. For the 4He–n system the s-wave can be modeled alternatively as a repulsive potential or as an attractive potential with a forbidden bound state. We explore these alternatives in 6He, because the interaction comes into play in modeling \({^6_{\Lambda}{\rm He}}\) as well as in our \({^4_{\Lambda}{\rm H}}\) + n + n model of \({^6_{\Lambda}{\rm H}}\) , where the valence neutrons are Pauli blocked from the s-shell of the core nucleus.  相似文献   

18.
We perform the resummation of large logarithmic corrections to the partonic cross sections for single-inclusive jet production in polarized pp collisions. We reach the next-to-leading logarithmic accuracy for this observable with the corresponding matching to the next-to-leading order calculation performed in the small-cone approximation. We present numerical results for the BNL-RHIC collider at $\sqrt{S}=200$  GeV and at $\sqrt{S}=500$  GeV. We find an enhancement of the spin-dependent cross section, specially at high transverse momentum for the jet, resulting in a rather small increase of the double-spin asymmetry $A^{\mathrm{jet}}_{\mathrm{LL}}$ for this process.  相似文献   

19.
We study the phenomenon of “crowding” near the largest eigenvalue \(\lambda _\mathrm{max}\) of random \(N \times N\) matrices belonging to the Gaussian Unitary Ensemble of random matrix theory. We focus on two distinct quantities: (i) the density of states (DOS) near \(\lambda _\mathrm{max}\) , \(\rho _\mathrm{DOS}(r,N)\) , which is the average density of eigenvalues located at a distance \(r\) from \(\lambda _\mathrm{max}\) and (ii) the probability density function of the gap between the first two largest eigenvalues, \(p_\mathrm{GAP}(r,N)\) . In the edge scaling limit where \(r = \mathcal{O}(N^{-1/6})\) , which is described by a double scaling limit of a system of unconventional orthogonal polynomials, we show that \(\rho _\mathrm{DOS}(r,N)\) and \(p_\mathrm{GAP}(r,N)\) are characterized by scaling functions which can be expressed in terms of the solution of a Lax pair associated to the Painlevé XXXIV equation. This provides an alternative and simpler expression for the gap distribution, which was recently studied by Witte et al. in Nonlinearity 26:1799, 2013. Our expressions allow to obtain precise asymptotic behaviors of these scaling functions both for small and large arguments.  相似文献   

20.
In work started in [17] and continued in this paper our objective is to study selectors of multivalued functions which have interesting dynamical properties, such as possessing absolutely continuous invariant measures. We specify the graph of a multivalued function by means of lower and upper boundary maps \(\tau _{1}\) and \(\tau _{2}.\) On these boundary maps we define a position dependent random map \(R_{p}=\{\tau _{1},\tau _{2};p,1-p\},\) which, at each time step, moves the point \(x\) to \(\tau _{1}(x)\) with probability \(p(x)\) and to \(\tau _{2}(x)\) with probability \(1-p(x)\) . Under general conditions, for each choice of \(p\) , \(R_{p}\) possesses an absolutely continuous invariant measure with invariant density \(f_{p}.\) Let \(\varvec{\tau }\) be a selector which has invariant density function \(f.\) One of our objectives is to study conditions under which \(p(x)\) exists such that \(R_{p}\) has \(f\) as its invariant density function. When this is the case, the long term statistical dynamical behavior of a selector can be represented by the long term statistical behavior of a random map on the boundaries of \(G.\) We refer to such a result as a mathematical holographic principle. We present examples and study the relationship between the invariant densities attainable by classes of selectors and the random maps based on the boundaries and show that, under certain conditions, the extreme points of the invariant densities for selectors are achieved by bang-bang random maps, that is, random maps for which \(p(x)\in \{0,1\}.\)   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号