共查询到20条相似文献,搜索用时 15 毫秒
1.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution. 相似文献
2.
Maria Lalia‐Kantouri Prof. Dr. Antonios G. Hatzidimitriou David Williams 《无机化学与普通化学杂志》2009,635(15):2495-2502
The reaction of bis(3‐cyano‐2,4‐pentanedionato)copper(II), [Cu(NC‐acac)2] with the nitrogenous base N,N‐dimethyl, N′‐ethyl‐1,2‐ethylenediamine (dmeen) in the presence of Cu(ClO4)2 · 6H2O, afforded a new cationic mixed‐ligand chelate [Cu(CN‐acac)(dmeen)]+. Its structure was characterized spectroscopically (IR, UV/Vis, EPR) and verified by X‐ray diffraction studies as [Cu(CN‐acac)(dmeen)(H2O)]ClO4. The coordination of CN‐acac– as bridging ligand leads to a polymeric helical chain, which extends in the crystallographic c axis. Density functional theory (DFT) calculations suggest that in the solid state the anion CN‐acac– binding is envisaged through the nitrogen atom of the cyanido group, establishing an octahedral arrangement around copper, whereas in solution, the square‐planar arrangement is prevailed, in accordance with the EPR findings. 相似文献
3.
Kieber-Emmons MT Annaraj J Seo MS Van Heuvelen KM Tosha T Kitagawa T Brunold TC Nam W Riordan CG 《Journal of the American Chemical Society》2006,128(44):14230-14231
An "end-on" Ni2+-superoxo adduct has been prepared via two independent synthetic routes and its structure ascertained by spectroscopic and computational methods. The new structure type in nickel coordination chemistry is supported by resonance Raman and EPR spectroscopic features, the former displaying a high frequency nu (O-O) mode (1131 cm-1) consistent with significant superoxo character. The Ni2+-superoxo adduct oxidizes PPh3 to OPPh3 in quantitative yield. 相似文献
4.
5.
Synthesis, Crystal Structures, and Vibrational Spectra of [OsBr(acac)(PPh3)] and [OsBr(acac)(AsPh3)] By reaction of tetrabromoacetylacetonatoosmate(IV) with PPh3 or AsPh3 in ethanol the complexes [OsBr(acac)(PPh3)] ( 1 ) and [OsBr(acac)(AsPh3)] ( 2 ) are formed, which are purified by chromatography on silica gel. X-ray structure determinations of single crystals of ( 1 ) (monoclinic, space group P 21/n, a = 13.035(2), b = 18.2640(14), c = 16.636(3) Å, β = 112.776(14)°, Z = 4) and ( 2 ) (monoclinic, space group P 21/c, a = 13.23(5), b = 18.35(2), c = 16.65(2) Å, β = 112.9(5)°, Z = 4) result in mean bond distances Os–P = 2.413, Os–As = 2.483, Os–Br = 2.488 and Os–O = 2.037 Å. The vibrational spectra (10 K) exhibit the inner ligand vibrations of the acac, PPh3 and AsPh3 groups with nearly constant frequencies and the stretching vibrations of OsP at 499–522, of OsAs at 330–339, of OsBr at 213–214 and of OsO in the range 460–694 cm–1. 相似文献
6.
The neutral complex [Ru(2)(acac)(4)(bptz)] (I) has been prepared by the reaction of Ru(acac)(2)(CH(3)CN)(2) with bptz (bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) in acetone. The diruthenium(II,II) complex (I) is green and exhibits an intense metal-ligand charge-transfer band at 700 nm. Complex I is diamagnetic and has been characterized by NMR, optical spectroscopy, IR, and single-crystal X-ray diffraction. Crystal structure data for I are as follows: triclinic, P1, a = 11.709(2) A, b = 13.487(3) A, c = 15.151(3) A, alpha = 65.701(14) degrees, beta = 70.610(14) degrees, gamma = 75.50(2) degrees, V = 2038.8(6) A(3), Z = 2, R = 0.0610, for 4397 reflections with F(o) > 4sigmaF(o). Complex I shows reversible Ru(2)(II,II)-Ru(2)(II,III) and Ru(2)(II,III)-Ru(2)(III,III) couples at 0.17 and 0.97 V, respectively; the 800 mV separation indicates considerable stabilization of the mixed-valence species (K(com) > 10(13)). The diruthenium(II,III) complex, [Ru(2)(acac)(4)(bptz)](PF(6)) (II) is prepared quantitatively by one-electron oxidation of I with cerium(IV) ammonium nitrate in methanol followed by precipitation with NH(4)PF(6). Complex II is blue and shows an intense MLCT band at 575 nm and a weak band at 1220 nm in CHCl(3), which is assigned as the intervalence CT band. The mixed valence complex is paramagnetic, and an isotropic EPR signal at g = 2.17 is observed at 77 and 4 K. The solvent independence and narrowness of the 1200 nm band show that complex II is a Robin and Day class III mixed-valence complex. 相似文献
7.
Antonio E. Mauro Paula S. Haddad Henrique E. Zorel Jr. Regina H. A. Santos Sandra R. Ananias Fabiane R. Martins Laura H. R. Tarrasqui 《Transition Metal Chemistry》2004,29(8):893-899
The compounds [Cu(N3)(NSC)(tmen)]n (1), [Cu(N3)(NCO)(tmen)]n (2) and [Cu(N3)(NCO)(tmen)]2 (3) (tmen=N,N,N′,N′-tetramethylethylenediamine) were synthesized and studied by i.r. spectroscopy. Single crystals of compounds (1) and (3) were obtained and characterized by X-ray diffraction. The structure of compound (1) consists of neutral chains of copper(II) ions bridged by a single azido ligand showing the asymmetric end-to-end coordination fashion. Each copper ion is also surrounded by the other three nitrogen atoms; two from one N,N,N′,N′-tetramethylethylenediamine and one from a terminal bonded thiocyanate group. Compound (2) decomposes slowly in acetone and the product formed [Cu(N3)(NCO)(tmen)]2 (3) crystallizes in the monoclinic system (P21). The structure of (3) consists of dimeric units in which the Cu atoms are penta-coordinated and connected by μ(1,3) bridging azido and cyanate ligands. In both cases the five coordinated atoms give rise to a slightly distorted square-based pyramid coordination geometry at each copper ion. The thermal behavior of [Cu(N3)(NSC)(tmen)]n (1) and [Cu(N3)(NCO)(tmen)]n (2) were investigated and the final decomposition products were identified by X-ray powder diagrams. 相似文献
8.
The solvatochromic indicator [Cu(acac)(tmen)(H 2O)].PF 6 ( 1.H 2O) has been synthesized and crystallographically characterized. 1.H 2O binds an H 2O molecule at the Cu(II) axial site, while the PF 6 (-) anion is coordination free. The binding properties of [Cu(PF 6)(acac)(tmen)] ( 1) and [Cu(BF 4)(acac)(tmen)] ( 2) have been investigated in solution and the solid state. The donor number of the PF 6 (-) anion (DN PF6) was determined from the UV-vis spectra of 1 in 1,2-dichloroethane. The value of DN PF6 of the PF 6 (-) anion is slightly larger than that of the tetraphenylborate anion (BPh 4 (-)), which is known as a noncoordinating anion. In the solid state, 1 and 2 reversibly bind and release H 2O molecules at the Cu(II) axial sites. The coordinated H 2O molecules in 2 are more easily removed than those in 1 because of the strong Lewis basicity of the BF 4 (-) anion compared to the PF 6 (-) ion. The lower melting point of 1 versus 2 is attributed to the loose binding of the PF 6 (-) anions to the Cu(II) centers, which induces the dynamic nature of the crystal. 相似文献
9.
Summary. Rh(III) polypyridine complexes ([Cp
*Rh(ppy)(H2O)]2+; ppy = 2,2′-bipyridine, 2,2′-bipyridine-4,4′-dicarboxylate, o-phenanthroline, tetrahydro-4,4′-dialkyl-bis-oxazole) oxidize in organic or aqueous alkaline solution primary and secondary alcohols to aldehydes or ketones and are thereby
reduced to the Rh(I) complexes Cp
*Rh(ppy). The Rh(III) form can be regenerated byoxidants like pyruvate or oxygen, making the reaction quasi-catalytic. The reaction follows anautocatalytic pathway; hydrogen transfer from the α-CH2 group of an alcoholate complex [Cp
*Rh(ppy)(OR)]+ to Cp
*Rh(I)(ppy) is suggested to yield the Rh(II) intermediate Cp
*Rh(ppy)H as the key and rate determining step. The knowledge of Rh(III)/Rh(I) redox potentials allows to estimate the thermodynamic
driving force of the reaction which is not more than about 300 mV. 相似文献
10.
Lakuntza O Matxain JM Ruipérez F Besora M Maseras F Ugalde JM Schlangen M Schwarz H 《Physical chemistry chemical physics : PCCP》2012,14(26):9306-9310
A detailed computational study on the reaction mechanisms of the thermal activation of methane by the bare complex [Ni(H)(OH)](+) has been conducted. The experimentally observed reaction features, i.e. the ligand exchange Ni(H) → Ni(CH(3)), the H/D scrambling between the incoming methane and the hydrido ligand of the nickel complex, the spectator-like behavior of the OH ligand, and the relatively moderate reaction efficiency of 6% relative to the collision rate of the ion/molecule reaction, can be explained by considering three competing mechanisms, and a satisfactory agreement between experiment and theory has been found. 相似文献
11.
Complexes of copper (II) ions and uracil were studied using tandem mass spectrometry (Fourier transform ion cyclotron resonance, FTICR, mass spectrometry) including extensive isotopic labeling as well as theoretical calculations. Positive ion electrospray mass spectra of aqueous solutions of CuCl(2) and uracil show that the [Cu(Ura-H)(Ura)](+) ion is the most abundant ion even at low concentrations of uracil. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments show that the lowest energy decomposition pathway for [Cu(Ura-H)(Ura)](+) , surprisingly, is not the loss of uracil, but the loss of HNCO followed by HCN as the most abundant secondary fragmentation product. MS(n) studies identified primary, secondary and tertiary fragmentation products. Extensive isotopic labeling studies, as well as computational studies allowed for a detailed fragmentation scheme for the [Cu(Ura-H)(Ura)](+) ion, beginning with the lowest energy structure. 相似文献
12.
Tercero J Diaz C Ribas J Mahía J Maestro M 《Chemical communications (Cambridge, England)》2002,(4):364-365
The new heterodinuclear complex [Cu(Me2oxpn)Ni(NO2)(tmen)](ClO4), that exhibits strong antiferromagnetic intramolecular coupling between CuII and NiII ions (ferrimagnetic behavior), shows ferromagnetic ordering at low temperature, due likely to a small canting phenomenon; it is one of the very few compounds made from isolated molecules that lead to cooperative magnetic behavior. 相似文献
13.
14.
Wei‐Cheng Xiong Guang‐Ao Yu Quan Gan Jun Yin Xiang‐Gao Meng Sheng Hua Liu 《应用有机金属化学》2007,21(9):794-797
Formal [2 + 2 + 2] addition reactions of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with PhC?CR (R = H, COOEt) give [Cp*Ru(η6‐C6H5? C9H8R)] BF4 (1a, R = H; 2a, R = COOEt). Treatment of [Cp*Ru(H2O)(NBD)]BF4 with PhC?C? C?CPh does not give [2 + 2 + 2] addition product, but [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BF4(3a). Treatment of 1a, 2a, 3a with NaBPh4 affords [Cp*Ru(η6‐C6H5? C9H8R)] BPh4 (1b, R = H; 2b, R = COOEt) and [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BPh4(3b). The structures of 1b, 2b and 3b were determined by X‐ray crystallography. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
15.
16.
Patrocinio AO Brennaman MK Meyer TJ Murakami Iha NY 《The journal of physical chemistry. A》2010,114(46):12129-12137
Excited-state dynamics in fac-[Re(CO)(3)(Me(4)phen)(cis-L)](+) (Me(4)phen = 3,4,7,8-tetramethyl-1,10-phenanthroline, L = 4-styrylpyridine (stpy) or 1,2-bis(4-pyridyl)ethylene (bpe)) were investigated by steady-state and time-resolved techniques. A complex equilibrium among three closely lying excited states, (3)IL(cis-L), (3)MLCT(Re→Me(4)phen), and (3)IL(Me(4)phen), has been established. Under UV irradiation, cis-to-trans isomerization of coordinated cis-L is observed with a quantum yield of 0.15 in acetonitrile solutions. This photoreaction competes with radiative decay from (3)MLCT(Re→Me(4)phen) and (3)IL(Me(4)phen) excited states, leading to a decrease in the emission quantum yield relative to the nonisomerizable complex fac-[Re(CO)(3)(Me(4)phen)(bpa)](+) (bpa = 1,2-bis(4-pyridyl)ethane). From temperature-dependent time-resolved emission measurements in solution and in poly(methyl methacrylate) (PMMA) films, energy barriers (ΔE(a)) for interconversion between (3)MLCT(Re→Me(4)phen) and (3)IL(Me(4)phen) emitting states were determined. For L = cis-stpy, ΔE(a) = 11 (920 cm(-1)) and 15 kJ mol(-1) (1254 cm(-1)) in 5:4 propionitrile/butyronitrile and PMMA, respectively. For L = cis-bpe, ΔE(a) = 13 kJ mol(-1) (1087 cm(-1)) in 5:4 propionitrile/butyronitrile. These energy barriers are sufficient to decrease the rate constant for internal conversion from higher-lying (3)IL(Me(4)phen) state to (3)MLCT(Re→Me(4)phen), k(i) ? 10(6) s(-1). The decrease in rate allows for the observation of intraligand phosphorescence, even in fluid medium at room temperature. Our results provide additional insight into the role of energy gap and excited-state dynamics on the photochemical and photophysical properties of Re(I) polypyridyl complexes. 相似文献
17.
18.
Kaizaki Sumio Kita Przemyslaw Wiśniewska Joanna Sakagami Narumi 《Transition Metal Chemistry》1998,23(4):511-515
Three new complex ions, [Cr(NCS)(R-pdtrp)]-, [Cr(R-pdtrp)(NCSHg)]+ and [Cr(edtrp)(NCSHg)]+, that are derivatives of the trans-equatorial isomers of [Cr(R-pdtrp)(H2O)]0 and [Cr(edtrp)(H2O)]0 (edtrp= ethylenediamine-N,N,N-tripropionate, R-pdtrp= R-propane-1,2-diamine-N,N,N-tripropionate) have been obtained and characterized in solution. Rate constants and activation parameters, including, in two cases, volumes of activation, have been determined. Rate retardation for NCS- ligand release has been observed with increasing acidity within the pH 0–2 range. The mechanism of the reactions has been discussed. 相似文献
19.
Maria Fumanal Yu Harabuchi Etienne Gindensperger Satoshi Maeda Chantal Daniel 《Journal of computational chemistry》2019,40(1):72-81
The electronic excited state reactivity of [Mn(im)(CO)3(phen)]+ (phen = 1,10-phenanthroline; im = imidazole) ranging between 420 and 330 nm have been analyzed by means of relativistic spin–orbit time-dependent density functional theory and wavefunction approaches (state-average-complete-active-space self-consistent-field/multistate CAS second-order perturbation theory). Minimum energy conical intersection (MECI) structures and connecting pathways were explored using the artificial force induced reaction (AFIR) method. MECIs between the first and second singlet excited states (S1/S2-MECIs) were searched by the single-component AFIR (SC-AFIR) algorithm combined with the gradient projection type optimizer. The structural, electronic, and excited states properties of [Mn(im)(CO)3(phen)]+ are compared to those of the Re(I) analogue [Re(im)(CO)3(phen)]+. The high density of excited states and the presence of low-lying metal-centered states that characterize the Mn complex add complexity to the photophysics and open various dissociative channels for both the CO and imidazole ligands. © 2018 Wiley Periodicals, Inc. 相似文献