首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study has been made of the spectral dependence of the Cotton-Mouton effect (CME) quadratic in magnetic field, nonreciprocal birefringence (NB) linear in magnetic field, and the Faraday effect (FE) in the cubic magnetic semiconductor γ-Dy2S3. Unlike the FE, the CME and the NB in this crystal are anisotropic, with the pattern of the anisotropy being dependent on the photon energy. The dependence of the CME and NB dispersion on the direction of the magnetic field B indicates contribution from a variety of electronic transitions and mechanisms to these phenomena. It is shown that the resonant contributions to the CME and NB in the transparency region originate from electronic transitions near E?3.4 eV (beyond the band edge E g=2.8 eV), which are likely transitions from the localized ground state of the Dy3+ ion to states derived from mixing of the band and 4f N?1 5d states of the dysprosium ion. The character of the CME anisotropy in the transparency region and near the local electronic transition 6 H 15/26 F 3/2 connecting states of the unfilled 4f shell of the Dy3+ ion suggests the presence of a strong axial component of the crystal field acting on the rare earth ion.  相似文献   

2.
Features of the effect of Faraday rotation (the rotation of the radiation polarization plane) in a magnetic field of the D 1 line in Cs atomic vapor in a nanocell with the thickness L varying in the range of 80–900 nm have been analyzed. The key parameter is the ratio L/λ, where λ = 895 nm is the wavelength of laser radiation resonant with the D 1 line. The comparison of the parameters for two selected thicknesses L = λ and λ/2 has revealed an unusual behavior of the Faraday rotation signal: the spectrum of the Faraday rotation signal at L = λ/2 = 448 nm is several times narrower than the spectrum of the signal at L = λ, whereas its amplitude is larger by a factor of about 3. These differences become more dramatic with an increase in the power of the laser: the amplitude of the Faraday rotation signal at L = λ/2 increases, whereas the amplitude of the signal at L = λ almost vanishes. Such dependences on L are absent in centimeter-length cells. They are inherent only in nanocells. In spite of a small thickness, L = 448 nm, the Faraday rotation signal is certainly detected at magnetic fields ≥0.4 G, which ensures its application. At thicknesses L < 150 nm, the Faraday rotation signal exhibits “redshift,” which is manifestation of the van der Waals effect. The developed theoretical model describes the experiment well.  相似文献   

3.
The temperature dependence of the absorption spectra and magnetic circular dichroism due to f-f transitions from the 6 H 15/2 to 6 F 5/2 and 6(F 7/2 + H 5/2) states in the Dy3+ ion in (Dy2O3-P2O5-SiO2-GeO2) and (Dy2O3-La2O3-Al2O3-B2O3-SiO2-GeO2) glasses and the temperature dependence of the Faraday effect were studied. The temperature dependence of the Faraday effect caused by f-d transitions was found to differ from that of the magnetic circular dichroism due to f-f transitions. It was shown that f-f transitions occur preferentially in Dy3+ ions associated into clusters. The origin of the paramagnetic magneto-optical activity of f-f transitions was analyzed. It was shown that the contributions to this activity can differ in value and sign and that the ratio between these contributions depends on the transition type. In some cases, this difference results in an anomalous temperature dependence of the magneto-optical activity.  相似文献   

4.
Experiments are carried out on the spectroscopy of the Förster resonance lines Rb(37P) + Rb(37P) → Rb(37S) + Rb(38S) and microwave transitions nPnS, nD between Rydberg states of cold rubidium atoms in a magneto-optical trap (MOT). Under ordinary conditions, all spectra exhibit a linewidth of 2–3 MHz irrespective of the interaction time between atoms or between atoms and microwave radiation, although the limit resonance width should be determined by the inverse interaction time. The analysis of experimental conditions has shown that the main source of line broadening is the inhomogeneous electric field of cold photoions that are generated under the excitation of initial nP Rydberg states by broadband pulsed laser radiation. The application of an additional electric-field pulse that rapidly extracts photoions produced by a laser pulse leads to a considerable narrowing of lines of microwave resonances and the Förster resonance. Various sources of line broadening in cold Rydberg atoms are analyzed.  相似文献   

5.
Quadratic Stark corrections to the wave functions, matrix elements, and probabilities of transitions between the singlet states 1 S 0 and 1 P 1 of helium atoms are calculated. The coefficients of the polynomials that depend on the effective principal quantum number of the upper level v f and that approximate the numerical values of the polarizabilities, the quadratic corrections to the wave functions, and the probabilities of transitions to highly excited Rydberg states with large v f are determined. The results of calculations testify that the probabilities of all σ transitions n i 1 S 0n f 1 P 1 and π transitions to the states with n f > n i /2 are decreased with increasing electric field strength, except for the transition 21 S 0 → 21 P 1, whose probability increases both for σ and for π transitions.  相似文献   

6.
The rotation of the radiation polarization plane in a longitudinal magnetic field (Faraday effect) on the D1 line in atomic Rb vapor has been studied with the use of a nanocell with the thickness L varying in the range of 100–900 nm. It has been shown that an important parameter is the ratio L/λ, where λ = 795 nm is the wavelength of laser radiation resonant with the D1 line. The best parameters of the signal of rotation of the radiation polarization plane have been obtained at the thickness L = λ/2 = 397.5 nm. The fabricated nanocell had a large region with such a thickness. The spectral width of the signal reached at the thickness L = 397.5 nm is approximately 30 MHz, which is much smaller than the spectral width (≈ 500 MHz) reached with ordinary cells with a thickness in the range of 1–100 mm. The parameters of the Faraday rotation signal have been studied as functions of the temperature of the nanocell, the laser power, and the magnetic field strength. The signal has been reliably detected at the laser power PL ≥ 1 μW, magnetic field strength B ≥ 0.5 G, and the temperature of the nanocell T ≥ 100°C. It has been shown that the maximum rotation angle of the polarization plane in the longitudinal magnetic field is reached on the Fg = 3 → Fe = 2 transition of the 85Rb atom. The spectral profile of the Faraday rotation signal has a specific shape with a sharp peak, which promotes its applications. In particular, Rb atomic transitions in high magnetic fields about 1000 G are split into a large number of components, which are completely spectrally resolved and allow the study of the behavior of an individual transition.  相似文献   

7.
Theoretical studies of the Faraday rotation (FR) effect in alkali vapors contained in extremely thin cells are presented. It is shown that the spectra of the FR signal are well frequency resolved despite the huge number of atomic transitions. This allows one to study the evolution of the Cs D1 (λ = 895 nm) line hyperfine structure of Fg = 4 → Fe = 3, 4 atomic transitions in magnetic fields. The presented theoretical model predicts the coherent Dicke narrowing effect and its revival with a periodicity ΔL = λ. The practical applications of the FR are noted.  相似文献   

8.
The cross sections of the reactions e+e → ?(nS+π? (n = 1, 2,3) and e+eh b (nP+π? (n = 1, 2) are measured as a function of the cms collision energy from their thresholds up to 11.02 GeV using the data of the Belle experiment operating at the KEKB e+e collider. The peaks of the ?(10 860) and ?(11020) resonances are observed in the cross sections with an insignificant contribution of the continuum. The decay ?(11020) → h b (nP+π? is found to fully proceed through intermediate isovector states Z b (10610) and Z b (10650).  相似文献   

9.
Forbidden 2PnP and 2PnF transitions in the ranges of the principal quantum number n = 42–114 and n = 38–48 have been detected in the optical spectra of ultracold highly excited lithium-7 atoms. The presence of forbidden transitions is due to induced external electric fields. The quantum defects and ionization energy obtained in various experiments and predicted theoretically have been discussed.  相似文献   

10.
The A-exciton series in the absorption spectra of β-ZnP2 monoclinic zinc diphosphide samples is investigated at different directions of the wave vector and different polarization states of radiation. It is shown that the oscillator strengths determined for the observed transitions are adequately described by the relationship F n n?3 characteristic of S-type exciton states. The assumption is made that the A-exciton series is associated with the partially allowed dipole transitions to nS states of the orthoexciton with Γ 2 ? (x) symmetry at m s =0. These states are mixed, to a first approximation, with nS states of the Γ 2 ? (z) singlet exciton due to the spin-orbit 2 interaction and are split off by the long-range (nonanalytical) part of the exchange interaction. The Fano antiresonances arise in the absorption spectra at resonances of the A-exciton series when the radiation vector E (or the induction vector D) has a component along the crystallographic axis c. These antiresonances are induced by the configurational interaction of discrete exciton states of the A series with the continuum of the exciton-phonon spectrum due to indirect transitions to the 1S band of the singlet exciton with phonon emission.  相似文献   

11.
S. S. Murzin 《JETP Letters》2009,89(6):298-300
It has been pointed out that, according to the two-parameter scaling theory, the magnetic-field position of the phases of the integer quantum Hall effect (IQHE) at ωcτ ? 1 is not determined by the filling factor ν = nh/eB. The position of the IQHE phases is given by the bare Hall conductivity σ xy 0 . In this regard, it has been shown that the diagonal resistivity in the magnetic field measured by Sakr et al. [Phys. Rev. B 64, 161308 (2001)] does not exhibit transitions between the σ xy = 3, 4 and 6 IQHE states on the one hand and the dielectric state on the other hand in contrast to the assertion by Sakr et al.  相似文献   

12.
The results of theoretical calculations of the blackbody ionization rates of lithium, potassium, and cesium atoms residing in Rydberg states are presented. The calculations are performed for nS, nP, and nD states in a wide range of principal quantum numbers, n = 8?65, for blackbody radiation temperatures T = 77, 300, and 600 K. The calculations are performed using the known quasi-classical formulas for the photoionization cross sections and for the radial matrix elements of transitions in the discrete spectrum. The effect of the blackbody-radiation-induced population redistribution between Rydberg states on the blackbody ionization rates measured under laboratory conditions is quantitatively analyzed. Simple analytical formulas that approximate the numerical results and that can be used to estimate the blackbody ionization rates of Rydberg atoms are presented. For the S series of lithium, the rate of population of high-lying Rydberg levels by blackbody radiation is found to anomalously behave as a function of n. This anomaly is similar to the occurrence of the Cooper minimum in the discrete spectrum.  相似文献   

13.
The differential transmission spectra of CdSe/ZnS quantum dots are investigated. It is revealed that the differential transmission spectra measured upon resonant excitation of electrons into the first excited state 1P(e) exhibit a number of specific features, such as a decrease in transmission at the pump frequency, bleaching in the course of the pump pulse at frequencies corresponding to the fundamental optical transition 1S 3/2(h)-1S(e) and transitions between excited hole states and the 1S(e) electron ground state, and retardation of this process with an increase in the energy of the pump pulse. The observed specific features can be explained by the following factors: (i) the absence of a “phonon bottleneck” for electrons due to the energy transfer from hot electrons to rapidly relaxing holes, (ii) relaxation through intermediate quantum-well energy levels of holes, and (iii) retardation of relaxation with increasing number of excited charge carriers in a quantum dot.  相似文献   

14.
Helium ions were produced in then=4 states by electron collisions with ground state atoms, resulting in simultaneous ionization and excitation. Dipole transitions between the Zeeman levels of the states 42 S 1/2 and 42 P 1/2 were induced by a microwave electric field. The intensity of the emitted Fowlerα line 4686 Å, corresponding to transitions from then=4 to then=3 states was then reduced by about 3%. From the measurements, a value of the Lamb shiftδ=1751±25 MHz was obtained, compared with the theoretical valueδ=1768.23±0.55 MHz, and the results ofLea, Leventhal andLamb ofδ=1765±20 MHz.  相似文献   

15.
The electron spin resonance has been measured for the first time both in the paramagnetic phase of the metallic GdB6 antiferromagnet (TN = 15.5K) and in the antiferromagnetic state (T < TN). In the paramagnetic phase below T* ~ 70 K, the material is found to exhibit a pronounced increase in the resonance linewidth and a shift in the g-factor, which is proportional to the linewidth Δg(T) ~ ΔH(T). Such behavior is not characteristic of antiferromagnetic metals and seems to be due to the effects related to displacements of Gd3+ ions from the centrosymmetric positions in the boron cage. The transition to the antiferromagnetic phase is accompanied by an abrupt change in the position of resonance (from μ0H0 ≈ 1.9 T to μ0H0 ≈ 3.9 T at ν = 60 GHz), after which a smooth evolution of the spectrum occurs, resulting eventually in the formation of the spectrum consisting of four resonance lines. The magnetic field dependence of the frequency of the resonant modes ω0(H0) obtained in the range of 28–69 GHz is well interpreted within the model of ESR in an antiferromagnet with the easy anisotropy axis ω/γ = (H 0 2 +2HAHE)1/2, where HE is the exchange field and HA is the anisotropy field. This provides an estimate for the anisotropy field, HA ≈ 800 Oe. This value can result from the dipole?dipole interaction related to the mutual displacement of Gd3+ ions, which occurs at the antiferromagnetic transition.  相似文献   

16.
In the first part of the paper we derive expressions of the Ginzburg-Landau (GL) type for the local tunneling density of states of superconducting alloys. These expressions are quite generally applicable at high excitation energies. One can see immediately that the density of states,N(r, ω), at any positionr and high energiesω is always larger than the local BCS density of states if the space dependence of the order parameter is governed by the GL-equation. This effect is largest for long mean free pathsl. In the second part of the paper we calculate the spatial average of the density of states,¯N, at all energiesω for a lattice of vortex lines in a magnetic field slightly below the upper critical field. The resulting curve of [¯N? N(0)]/N(0) versus co shows no gap and has a zero at about the gap value in zero field. Its value at ω=0 depends onl like ln(ξ0/l) for l?ξ0 [N(0) denotes the normal density of states, and ξ0 is the BCS coherence length].  相似文献   

17.
The first results of the study of optical absorption spectra of KTaO3: Er3+ crystals are presented. In the 350–660-nm region, lines are observed deriving from intraconfigurational electronic transitions from the 4 I 15/2 ground state to levels of the 4 F 9/2, 4 S 3/2, 2 H 11/2, 4 F 7/2, 4 F 5/2(4 F 3/2), 2 G 9/2, and 4 G 11/2 excited states of the Er3+ ions. A comprehensive study of transitions to the 4 F 9/2, 4 S 3/2, 2 H 11/2, and 4 F 7/2 levels at 77 K is carried out. The number of lines observed for the above transitions fits the theoretically possible number for ?-? electronic transitions in Er3+ ions in the cubic crystal field. In the case of a differently charged substituted ion, this situation occurs only under nonlocal impurity charge compensation. The energies of the excited state levels for the transitions under study are determined.  相似文献   

18.
In an atomic beam magnetic resonance experiment on Tb159 ΔF=0 transitions in several hfs-levels of thermally excited fine structure states have been observed. Detailed analysis of data showed twoJ=15/2 states, oneJ=13/2, oneJ=11/2, and, probably, oneJ=9/2 state to be present. For these levelsg J-values are given. It was concluded that the ground state of neutral terbium is 4f 8 5d 6s 2 8 G 15/2. The 4f 9 6s 2 6 H 15/2-level lies not more than 1000 cm?1 higher.  相似文献   

19.
The near-threshold portions of the energy dependences of the effective excitation cross sections of the resonance transition 4d105p2P1/2° → 4d105s2S1/2 and the two-electron forbidden transition 4d95s22D5/2 → 4d105p2P3/2° in the spectrum of the Cd+ ion were investigated by the spectroscopic method in crossed electron and ion beams. In the region of energy splitting of the 2P° and 2D levels, a significant resonance contribution of the autoionizing states of cadmium (decaying during the Coster-Kronig process) to the effective excitation cross sections of the noted transitions was revealed for the first time. It is found that the resonance contribution manifests itself much more strongly for the forbidden transition in comparison with the more intense resonance transition; i.e., the manifestation of the Coster-Kronig effect in the electron excitation of ions depends strongly on the cross section of the direct process. It is ascertained that, during the Coster-Kronig process, the main contribution to the resonance excitation of both the resonance and the two-electron forbidden spectral transitions is from the low-lying terms of the series of autoionizing states 4d105p(2P3/2°)ns, md and 4d9(2D3/2)5s2ns, md, which are in the splitting region of the 2P1/2, 3/2° and 2D5/2, 3/2 levels, rather than from the high-lying atomic autoionizing states of cadmium, which are located near the ionization limits (corresponding to the and 2P3/2° and 2D3/2 levels).  相似文献   

20.
It has been shown that the rotation of a spherical nanoparticle with the radius R near the surface of a semi-infinite homogeneous medium can result in singular resonance in fluctuation-induced electromagnetic phenomena (Casimir force, Casimir friction, and radiative heat generation). Fluctuation electromagnetic effects increase strongly near this resonance even in the presence of dissipation in the system. The resonance occurs at distances of the particle from the surface d < d0R(3/4ε″11)ε″22))1/3 (where ε″ii) is the imaginary part of the dielectric function of the particle or the medium at the frequency of a surface phonon or plasmon polariton ωi), when the rotation frequency coincides with poles in the photon generation rate at Ω ≈ ω1 + ω2. These poles are due to the multiple scattering of electromagnetic waves between the particle and surface under conditions of the anomalous Doppler effect. These poles exist even in the presence of dissipation. At d < d0, depending on the particle rotation frequency, the Casimir force can change sign; i.e., the attraction of the particle to the surface changes to repulsion. The results can be important for the development of experimental methods for the detection of quantum friction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号