首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic activation of the decomposition of gaseous formic acid with nickel powder and crystalline nickel borides is compared. Only after treatment with NH3-solution the activity of the nickel borides has the same order as that of nickel powder. Ni3B is the best of the catalysts used. The crystalline nickel borides cannot catalyze the anodic oxydation of methanol in alcaline solution at 80°C. — Nickel catalysts containing Boron can be prepared by the RANEY method from nickel boride and aluminum. These catalysts have the same activity as normal RANEY nickel with respect to the hydrogenation of the C?C? bond in crotonic acid; they are more active with respect to the C?O? bond of acetone. Methanol can be oxydised fastly in alcaline solution at 80°C on electrodes containing RANEY nickel. RANEY nickel containing boron is still better.  相似文献   

2.
以氢氧化镍为镍源, 亚磷酸为磷源, TiO2柱撑海泡石(Ti-Sep)为载体, 采用浸渍法制备了含磷化镍前驱体的样品, 然后采用程序升温还原法制备了Ni质量分数(w)为5%-25%的Ni2P/Ti-Sep催化剂, 并考察了其噻吩加氢脱硫性能. 采用X射线衍射(XRD)、N2吸附-脱附、热重分析(TGA)、透射电子显微镜(TEM)和傅里叶变换红外(FTIR)光谱对催化剂样品进行了表征. 结果表明, 海泡石经TiO2柱撑之后层间距增大, 比表面积和孔容都明显变大, 热稳定性增强, 活性组分Ni2P能很好地分散在海泡石层间及表面, 并且没有破坏海泡石的层状结构. 上述原因导致Ni2P/Ti-Sep催化剂的噻吩加氢脱硫活性明显优于Ni2P/Na-Sep(NaCl改性海泡石)和Ni2P/HCl-Sep(HCl改性海泡石)催化剂. 当Ni负载量为15% (w)时, Ni2P/Ti-Sep催化剂具有最好的噻吩加氢脱硫性能; 在反应温度为400℃时, 噻吩转化率达100%.  相似文献   

3.
Nickel speciation of fly ash by sequential extraction lacks specific identification of the chemical forms in the sulfidic nickel phase. A new voltammetric analysis of Ni3S2, NiS, and NiS2 in a carbon paste electrode is reported. Characteristic peaks were observed in acetate (pH 5) as the electrolyte; the anodic peak for Ni3S2 gave a linear dose response with microgram sensitivity. Reference compounds included heazlewoodite, millerite, commercial Ni3S2, NiS2, and NiS, but the latter was shown to be mainly the subsulfide. No Ni3S2 was found in two types of laboratory generated ash: an oil ash containing mainly soluble nickel and a high sulfur petroleum coke ash enriched with nickel.  相似文献   

4.
The collision induced fragmentation and reactivity of cationic and anionic nickel oxide clusters with carbon monoxide were studied experimentally using guided-ion-beam mass spectrometry. Anionic clusters with a stoichiometry containing one more oxygen atom than nickel atom (NiO2, Ni2O3, Ni3O4 and Ni4O5) were found to exhibit dominant products resulting from the transfer of a single oxygen atom to CO, suggesting the formation of CO2. Of these four species, Ni2O3 and Ni4O5 were observed to be the most reactive having oxygen transfer products accounting for approximately 5% and 10% of the total ion intensity at a maximum pressure of 15 mTorr of CO. Our findings, therefore, indicate that anionic nickel oxide clusters containing an even number of nickel atoms and an odd number of oxygen atoms are more reactive than those with an odd number of nickel atoms and an even number of oxygen atoms. The majority of cationic nickel oxides, in contrast to anionic species, reacted preferentially through the adsorption of CO onto the cluster accompanied by the loss of either molecular O2 or nickel oxide units. The adsorption of CO onto positively charged nickel oxides, therefore, is exothermic enough to break apart the gas-phase clusters. Collision induced dissociation experiments, employing inert xenon gas, were also conducted to gain insight into the structural properties of nickel oxide clusters. The fragmentation products were found to vary considerably with size and stoichiometry as well as ionic charge state. In general, cationic clusters favored the collisional loss of molecular O2 while anionic clusters fragmented through the loss of both atomic oxygen and nickel oxide units. Our results provide insight into the effect of ionic charge state on the structure of nickel oxide clusters. Furthermore, we establish how the size and stoichiometry of nickel oxide clusters influences their ability to oxidize CO, an important reaction for environmental pollution abatement.  相似文献   

5.
Preparation of Ni2P by temperature‐programmed reduction (TPR) of a phosphate precursor is challenging because the P?O bond is strong. An alternative approach to synthesizing Ni2P, by reduction of nickel hexathiodiphosphate (Ni2P2S6), is presented. Conversion of Ni2P2S6 into Ni2P occurs at 200–220 °C, a temperature much lower than that required by the conventional TPR method (typically 500 °C). A sulfur‐containing layer with a thickness of about 4.7 nm, composed of tiny crystallites, was observed at the surface of the obtained Ni2P catalyst (Ni2P?S). This is a direct observation of the sulfur‐containing layer of Ni2P, or the so‐called nickel phosphosulfide phase. Both the hydrodesulfurization activity and the selective hydrogenation performance of Ni2P‐S were superior to that of the catalyst prepared by the TPR method, suggesting a positive role of sulfur on the surface of Ni2P‐S. These features render Ni2P‐S a legitimate alternative non‐precious metal catalyst for hydrogenation reactions.  相似文献   

6.
Irradiations of Ni/TiO2 catalyst by UV in hydrogen at 77 K produced not only Ni+ ions on the catalyst surface, but also Ni3+ and Ti3+ species in bulk or near the interface between nickel and titania. These photo-generated species were detected and characterized by low temperature electron paramagnetic resonance (EPR) spectroscopy. Relative spin concentrations of the photogenerated paramagnetic species (Nin+ and Ti3+) varied with the nickel content in titania. A high nickel content in the sample resulted in a high peak intensity ratio of Nin+ to Ti3+. It was found that the photoinduced self-redox reaction of Ni2+ ions to form Ni+ and Ni3+ ions has a priority over the photoreduction of Ti4+ to Ti3+ ions. The characteristic EPR spectrum of the Ni3+ (3d7) ions with g1 = 2.268, g2 = 2.237, and g3 = 2.045 indicates that the Ni3+ ions are most likely located in the substitutional sites of TiO2, possibly near the surface rutile phase. The Ni+ species (3d9) with g4 = 2.130 and g1 = 2.063 are on the surface of TiO2. Both Ni+ and Ni3+ ions are quite stable in hydrogen. The Ni3+ ions seem to be responsible for anchoring the nickel ions onto titania and stablizing the Ni+ species on the surface. The Ni+ ions are thus free from oxygen poisoning and still show a high activity toward olefin oligomerization.  相似文献   

7.
In CO2 reforming of methane catalytic systems based on Ni3Al with various nickel and aluminum content were investigated. Catalysts were obtained using the self-propagating high-temperature synthesis. The XRD technique was used to investigate the phase content of the studied systems. It was demonstrated that the catalytic activity of the samples grows upon an increase in the nickel content of the system. By means of scanning electron microscopy, elemental analysis, and differential thermal analysis, it was demonstrated that these catalytic systems undergo structural changes and carbonize negligibly with remaining catalytic activity in time.  相似文献   

8.
Electrochemical properties of lanthanum nickel oxide, LaNiO284, were studied in alkaline solutions. It was concluded that redox reactions of Ni4+/Ni3+ and Ni3+/Ni2+ in a solid surface layer took place at 0.4 V and ?0.4 V (vs. Hg/HgO), respectively. As the conductivity of the oxide is a function of the oxygen concentration due to σ* bond formation, the resistivity of the electrode was changed depending on polarization potentials. The catalytic activity for oxygen reduction of a preoxidized electrode seemed to be higher than that of an electrode not intentionally oxidized, and the activity depended on the concentration of the alkaline solution. It was presumed that Ni3+ cations which form the σ* bond with oxygen have an important role in the electrocatalysis of oxygen reduction on lanthanum nickel oxide.  相似文献   

9.
The reaction of the Schiff base species tris-((2-hydroxybenzylidene)aminoethyl)-amine (TrenSal) and tris-((2-hydroxy-5-bromobenzylidene)aminoethyl)amine (Tren5BrSal) with the acetates of nickel and zinc are reported. Two trimetallic complexes (M3L2) of Tren5BrSal with nickel and zinc have been crystallographically characterised. The attempted crystallisation of bis-(tris-((2-hydroxybenzylidene)aminoethyl)amine nickel) nickel from solutions containing TMEDA lead to the production of two novel complexes: namely a nickel adduct of the partially hydrolysed TrenSal ligand and an interesting nickel bromide–carbonate salt. [(TrenSal)2Ni3] is reacted with PbCl2 to form a novel tetrametallic complex, [{(TrenSal)Ni}Pb(NC5H5)Cl]2, where a Pb2Cl2 moiety replaces the nickel at the core of the complex. Extending the study to include the related hexadentate ligand, 1,1,1-tris-((2-hydroxybenzylidene)-aminomethyl)propane (TEtSal), we were able to isolate and characterise both [(TEtSal)2Ni3] and [{(TEtSal)Ni}2Pb].  相似文献   

10.
Radiation-chemical reduction of Ni2+ ions in aqueous solutions of Ni(ClO4)2 containing sodium formate or isopropyl alcohol was studied, γ-Irradiation of deaerated solutions in the presence of polyethyleneimine, polyacrylate, or polyvinyl sulfate gives stable metal sols containing spherical particles 2–4 nm in diameter. The optical absorption spectra of nickel nanoparticles exhibit a band with a maximum at 215±5 nm (ε215=4.7·103 L mol−1 cm−1) and a shoulder at 350 nm. A mechanism for the radiation-chemical reduction of Ni2+ ions by hydrated electrons and organic radicals (CO2- radical anions in the case of HCOONa and Me2C·OH radicals in the case of PriOH). The redox potentials of the Ni2+/Ni0 and Ni+/Ni0 pairs (Ni0 is a nickel atom) are approximately −2.2 and −1.7 V, respectively. The nanoparticles are readily oxidized by O2, H2O2, and other oxidants. The reactions of these species with silver ions yield relatively stable nanoaggregates containing both nickel and silver in addition to silver nanoparticles. Published inIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 10, pp. 1733–1739, October, 2000.  相似文献   

11.
Studies on Oxide Catalysts. XLI. Redox Behavior of Nickel in Zeolites NiNa? Y. 3. Reducibility of Ni2+ Ions and Properties of the Reduced Nickel in Acidic Zeolites NiNa? Y The reducibility of nickel ions in zeolites NiNa? Y and the properties of metallic nickel were evaluated by tpr measurements, oxygen chemisorption and conversion of cyclohexane. In NiNa? Y samples which contain NH4+(H+) and/or Al3+(H+) ions the reducibility of Ni2+ ions is decreased caused by increasing acidity and the metal dispersion is improved. The electronic interaction between the acidic support and the metallic nickel leads to a decrease of both dehydrogenation and hydrogenolysis activity whereas the dehydrogenation selectivity increases.  相似文献   

12.
In the present investigation new baths have been adopted for the anodic deposition of different nickel oxides. The deposition of the different oxides was carried out from their metal salt solutions in the presence of a complexing agent. The following oxides were obtained: NiO2 from nickel chloride in the presence of ammonium chloride and sodium fluoride; Ni2O3 from nickel sulphate in the presence of ammonium chloride and citric acid; Ni3O4 from nickel chloride in the presence of sodium hydroxide, formaldehyde and potassium chloride, and finally NiO from nickel chloride in the presence of sodium carbonate, sodium chloride and ethanol.  相似文献   

13.
Ni-Al layered double hydroxides with Ni2+/Al3+ molar ratios of 1.5 and 3.0 have been synthesized by co-precipitation and studied as catalyst precursors for purification of CO-containing gas-mixtures by means of CO oxidation to CO2 and conversion of CO by water vapor (water-gas shift reaction). The influence of the alkali additives (K+ ions) on the water-gas shift activity has been also examined. It was established that the catalytic activity of both reactions increases with the temperature and the nickel content. Hypothetic schemes are proposed about activation of the catalysts in the WGSR and CO oxidation including redox Ni2+ ? Ni3+ transition on the catalyst surface. The activity in WGSR is positively affected by the presence of potassium promoter, depending on its amount. The sample with higher nickel loading is the most effective catalyst as for CO oxidation as well as for WGSR at intermediate temperatures after potassium promotion.  相似文献   

14.
Nickel phosphide is an emerging low‐cost, earth‐abundant catalyst that can efficiently reduce water to generate hydrogen. However, the synthesis of nickel phosphide catalysts usually involves multiple steps and is laborious. Herein, a convenient and straightforward approach to the synthesis of a three‐dimensional (3D) self‐supported biphasic Ni5P4‐Ni2P nanosheet (NS) array cathode is presented, which is obtained by direct phosphorization of commercially available nickel foam using phosphorus vapor. The synthesized 3D Ni5P4‐Ni2P‐NS array cathode exhibits outstanding electrocatalytic activity and long‐term durability toward the hydrogen evolution reaction (HER) in acidic medium. The fabrication procedure reported here is scalable, showing substantial promise for use in water electrolysis. More importantly, the approach can be readily extended to synthesize other self‐supported transition metal phosphide HER cathodes.  相似文献   

15.
From the perspective of tailoring the reaction pathways of photogenerated charge carriers and intermediates to remarkably enhance the solar-to-hydrogen energy conversion efficiency, we synthesized the three low-cost semiconducting nickel phosphides Ni2P, Ni12P5 and Ni3P, which singly catalyzed the hydrogen evolution from ammonia borane (NH3BH3) in the alkaline aqueous solution under visible light irradiation at 298 K. The systematic investigations showed that all the catalysts had higher activities under visible light irradiation than in the dark and Ni2P had the highest photocatalytic activity with the initial turnover frequency (TOF) value of 82.7 min−1, which exceeded the values of reported metal phosphides at 298 K. The enhanced activities of nickel phosphides were attributed to the visible-light-driven synergistic effect of photogenerated electrons (e) and hydroxyl radicals (.OH), which came from the oxidation of hydroxide anions by photogenerated holes. This was verified by the fluorescent spectra and the capture experiments of photogenerated electrons and holes as well as hydroxyl radicals in the catalytic hydrogen evolution process.  相似文献   

16.
The design and exploration of highly efficient and economical electrocatalysts for large-scale hydrogen generation from electrochemical water splitting is of great importance towards hydrogen economy. Herein, we have synthesized heterogeneous Cu1.92S@Cu3P/Ni2P nanospheres on nickel foam, which exhibits excellent OER activity in alkaline solution. When used as an anode, the overpotential of Cu1.92S@Cu3P/Ni2P at the current density of 10 mA cm−2 is only 211 mV, with a good stability (24 h). The heterogeneous Cu1.92S@Cu3P/Ni2P nanospheres has synergistic modulation of electronic structure, abundant active sites and fast electron transfer rate, which contributes to its high OER activity.  相似文献   

17.
In the search for alternative materials to current expensive catalysts, Ni has been addressed as one of the most promising and, on this trail, its corresponding nitride. However, nickel nitride is a thermally unstable compound, and therefore not easy to prepare especially as nanoparticles. In the present work, a sol–gel‐based process (the urea glass route) is applied to prepare well‐defined and homogeneous Ni3N and Ni nanoparticles. In both cases, the prepared crystalline nanoparticles (~25 nm) are dispersed in a carbon matrix forming interesting Ni3N‐ and Ni‐based composites. These nanocomposites were characterised by means of several techniques, such as XRD, HR‐TEM, EELS, and the reaction mechanism was investigated by TGA and IR and herein discussed. The catalytic activity of Ni3N is investigated for the first time, to the best of our knowledge, for hydrogenation reactions involving H2, and here compared to the one of Ni. Both materials show good catalytic activities but, interestingly, give a different selectivity between different functional groups (namely, nitro, alkene and nitrile groups).  相似文献   

18.
Summary Thermostable high-temperature structural alloys based on the refractory (melting temperature Tm=2060°C) RuAl intermetallic (IM) with an ordered B2 crystal structure (CsCl type) are developed. This IM surpass other aluminides (NiAl, TiAl and Ni3Al) used as the base for the development of high-temperature alloys and matrices of high-temperature composites (CM) intended for hot parts of supersonic engines, which serve at the temperatures exceeding operation temperatures of modern nickel-base superalloys. The differential barothermal analysis was used to develop the basic technological process of barothermal reaction sintering to produce near-net shape billets from RuAl-based structural materials.  相似文献   

19.
The exploration of new efficient OER electrocatalysts based on nonprecious metals and the understanding of the relationship between activity and structure of electrocatalysts are important to advance electrochemical water oxidation. Herein, we developed an efficient OER electrocatalyst with nickel boride (Ni3B) nanoparticles as cores and nickel(II) borate (Ni-Bi) as shells (Ni-Bi@NB) via a very simple and facile aqueous reaction. This electrocatalyst exhibited a small overpotential of 302 mV at 10 mA cm−2 and Tafel slope of 52 mV dec−1. More interestingly, it was found that the OER activity of Ni-Bi@NB was closely dependent on the crystallinity of the Ni-Bi shells. The partially crystalline Ni-Bi catalyst exhibited much higher activity than the amorphous or crystalline analogues; this higher activity originated from the enhanced intrinsic activity of the catalytic sites. These findings open up opportunities to explore nickel(II) borates as a new class of efficient nonprecious metal OER electrocatalysts, and to improve the electrocatalyst performance by modulating their crystallinity.  相似文献   

20.
A practical speciation method for a solid mixture of nickel species applicable to atmospheric monitoring of Ni0, Ni2+ and NiOx is reported. This involves magnetic extraction of Ni0 to separate it from the water-soluble nickel salts and the insoluble oxides, followed by adsorptive stripping voltammetry to quantify the nickel in each fraction. The separation scheme was validated by using calibration standards and by simulating air-filter samples prepared with authentic nickel products. The recoveries of nickel were Ni0 94–105% and total nickel 95–102%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号