共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Ketene as a Reaction Intermediate in the Carbonylation of Dimethyl Ether to Methyl Acetate over Mordenite
下载免费PDF全文
![点击此处可从《Angewandte Chemie (International ed. in English)》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Dominik B. Rasmussen Prof. Jakob M. Christensen Dr. Burcin Temel Dr. Felix Studt Dr. Poul Georg Moses Prof. Jan Rossmeisl Prof. Anders Riisager Prof. Anker D. Jensen 《Angewandte Chemie (International ed. in English)》2015,54(25):7261-7264
Unprecedented insight into the carbonylation of dimethyl ether over Mordenite is provided through the identification of ketene (CH2CO) as a reaction intermediate. The formation of ketene is predicted by detailed DFT calculations and verified experimentally by the observation of doubly deuterated acetic acid (CH2DCOOD), when D2O is introduced in the feed during the carbonylation reaction. 相似文献
6.
Dr. Sung Sakong Christian Mosch Ariel Lozano Dr. H. Fabio Busnengo Prof. Dr. Axel Groß 《Chemphyschem》2012,13(15):3467-3471
Any technologically important chemical reaction typically involves a number of different elementary reaction steps consisting of bond‐breaking and bond‐making processes. Usually, one assumes that such complex chemical reactions occur in a step‐wise fashion where one single bond is made or broken at a time. Using first‐principles calculations based on density functional theory we show that the barriers of rate‐limiting steps for technologically relevant surface reactions are significantly reduced if concerted reaction mechanisms are taken into account. 相似文献
7.
8.
Leopoldini M Russo N Toscano M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(7):2109-2117
The catalytic oxidation of methanol to formaldehyde by pyrroloquinoline quinone (PQQ)-containing methanol dehydrogenase (MDH) was investigated at density functional B3LYP level. The still controversial addition-elimination and hydride-transfer reaction mechanisms were analysed. Computations performed in the gas phase and in the protein environment indicated that both suggested reaction sequences involve very high activation barriers. In this situation, the reactions should have scarce probability to occur and the preference for one of the two paths cannot be stated. Here, we will show how some corrections to the successive steps in the addition-elimination mechanism can sensibly decrease the activation barriers height, making possible the determination of the MDH-preferred catalytic path. 相似文献
9.
Fernández I Mancheño MJ Vicente R López LA Sierra MA 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(35):11222-11230
Transmetalation reactions from chromium(0) Fischer carbene complexes to late-transition-metal complexes (palladium(0), copper(I), and rhodium(I)) have been studied computationally by density functional theory. The computational data were compared with the available experimental data. In this study, the different reaction pathways involving the different metal atoms have been compared with each other in terms of their activation barriers and reaction energies. Although the reaction profiles for the transmetalation reactions to palladium and copper are quite similar, the computed energy values indicate that the process involving palladium as catalyst is more favorable than that involving copper. In contrast to these transformations, which occur via triangular heterobimetallic species, the transmetalation reaction to rhodium leads to a new heterobimetallic species in which a carbonyl ligand is also transferred from the Fischer carbene to the rhodium catalyst. Moreover, the structure and bonding situation of the so far elusive heterobimetallic complexes are briefly discussed. 相似文献
10.
11.
Kirillova MV Kuznetsov ML da Silva JA Guedes da Silva MF Fraústo da Silva JJ Pombeiro AJ 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(6):1828-1842
Synthetic amavadin Ca[V{ON[CH(CH(3))COO](2)}(2)] and its models Ca[V{ON(CH(2)COO)(2)}(2)] and [VO{N(CH(2)CH(2)O)(3)}], in the presence of K(2)S(2)O(8) in trifluoroacetic acid (TFA), exhibit remarkable catalytic activity for the one-pot carboxylation of ethane to propionic and acetic acids with the former as the main product (overall yields up to 93 %, catalyst turnover numbers (TONs) up to 2.0 x 10(4)). The simpler V complexes [VO(CF(3)SO(3))(2)], [VO(acac)(2)] and VOSO(4) are less active. The effects of various factors, namely, C(2)H(6) and CO pressures, time, temperature, and amounts of catalyst, TFA and K(2)S(2)O(8), have been investigated, and this allowed optimisation of the process and control of selectivity. (13)C-labelling experiments indicated that the formation of acetic acid follows two pathways, the dominant one via oxidation of ethane with preservation of the C--C bond, and the other via rupture of this bond and carbonylation of the methyl group by CO; the C--C bond is retained in the formation of propionic acid upon carbonylation of ethane. The reactions proceed via both C- and O-centred radicals, as shown by experiments with radical traps. On the basis of detailed DFT calculations, plausible reaction mechanisms are discussed. The carboxylation of ethane in the presence of CO follows the sequential formation of C(2)H(5) (*), C(2)H(5)CO(*), C(2)H(5)COO(*) and C(2)H(5)COOH. The C(2)H(5)COO(*) radical is easily formed on reaction of C(2)H(5)CO(*) with a peroxo V catalyst via a V{eta(1)-OOC(O)C(2)H(5)} intermediate. In the absence of CO, carboxylation proceeds by reaction of C(2)H(5) (*) with TFA. For the oxidation of ethane to acetic acid, either with preservation or cleavage of the C-C bond, metal-assisted and purely organic pathways are also proposed and discussed. 相似文献
12.
13.
Tobisch S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(9):2520-2531
The complete catalytic reaction course for the organolanthanide-assisted intramolecular hydroamination/cyclization (IHC) of 4,5-heptadien-1-ylamine by a prototypical [(eta(5)-Me5C5)2LuCH(SiMe3)2] precatalyst has been critically scrutinized by employing a reliable DFT method. A computationally verified mechanistic scenario for the IHC of 1,3-disubstituted aminoallene substrates has been proposed that is consistent with the empirical rate law determined by experiment and accounts for crucial experimental observations. It involves kinetically rapid substrate association and dissociation equilibria, facile and reversible intramolecular allenic C=C insertion into the Ln-N bond, and turnover-limiting protonation of the azacycle's tether functionality, with the amine-amidoallene-Ln adduct complex representing the catalyst's resting state. This mechanistic scenario bears resemblance to the mechanism that has been recently proposed in a computational exploration of aminodiene IHC. The unique features of the IHC of the two substrate classes are discussed. Furthermore, the thermodynamic and kinetic factors that control the regio- and stereoselectivity of aminoallene IHC have been elucidated. These achievements have provided a deeper insight into the catalytic structure-reactivity relationships in organolanthanide-assisted cyclohydroamination of unsaturated C-C functionalities. 相似文献
14.
Heyndrickx W Occhipinti G Minenkov Y Jensen VR 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(51):14628-14642
An unconventional chain termination reaction has been explored for the SHOP (Shell higher olefin process)-type, anilinotropone, and salicylaldiminato nickel-based oligo- and polymerization catalysts by using density functional theory (DFT). Starting from the tetracoordinate alkyl phosphine complex, the termination reaction was found to involve a rearrangement of the alkyl chain to form a pentacoordinate β-agostic complex, β-hydride elimination, and olefinic chain dissociation and to compete with propagation at sufficiently high phosphine concentration and/or basicity. It provides the first complete and convincing mechanistic rationale for the decreasing chain lengths observed upon increasing phosphine concentration and basicity. The unconventional reaction was found to be a major termination pathway for the SHOP-type catalyst and is very unlikely to lead to branching and olefin isomerization, which is critical for explaining why the SHOP catalyst, in contrast to the anilinotropone and salicylaldiminato catalysts, tends to lead to the oligomerization of ethylene to form linear α-olefins. Based on our results we have proposed a new and extended catalytic cycle for the SHOP-type ethylene oligomerization catalyst. Finally, the importance of the new termination reaction for the SHOP-type catalyst suggests that this reaction may also operate with other ethylene oligomerization nickel catalysts. This prediction was confirmed for a pyrazolonatophosphine catalyst, for which the new termination route was found to be even more facile, which explains the short oligomers produced by this catalyst. 相似文献
15.
Theoretical investigation of the reaction mechanism of the dinuclear zinc enzyme dihydroorotase 总被引:1,自引:0,他引:1
Liao RZ Yu JG Raushel FM Himo F 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(14):4287-4292
The reaction mechanism of the dinuclear zinc enzyme dihydroorotase was investigated by using hybrid density functional theory. This enzyme catalyzes the reversible interconversion of dihydroorotate and carbamoyl aspartate. Two reaction mechanisms in which the important active site residue Asp250 was either protonated or unprotonated were considered. The calculations establish that Asp250 must be unprotonated for the reaction to take place. The bridging hydroxide is shown to be capable of performing nucleophilic attack on the substrate from its bridging position and the role of Zn(beta) is argued to be the stabilization of the tetrahedral intermediate and the transition state leading to it, thereby lowering the barrier for the nucleophilic attack. It is furthermore concluded that the rate-limiting step is the protonation of the amide nitrogen by Asp250 coupled with C-N bond cleavage, which is consistent with previous experimental findings from isotope labeling studies. 相似文献
16.
Mora G Piechaczyk O Houdard R Mézailles N Le Goff XF le Floch P 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(32):10047-10057
The platinum-catalyzed allylation of amines with allyl alcohols was studied experimentally and theoretically. The complexes [Pt(eta(3)-allyl)(dppe)]OTf (2) and [Pt(eta(3)-allyl)(DPP-Xantphos)]PF(6) (5) were synthesized and structurally characterized, and their reactivity toward amines was explored. The bicyclic aminopropyl complex [Pt(CH(2)CH(2)CH(2)NHBn-kappa-C,N)(dppe)]OTf (3) was obtained from the reaction of complex 2 with an excess of benzylamine, and this complex was shown to be a deactivated form of catalyst 2. On the other hand, reaction of complex 5 with benzylamine and allyl alcohol led to formation of the 16-VE platinum(0) complex [Pt(eta(2)-C(3)H(5)OH)(DPP-Xantphos)] (7), which was structurally characterized and appears to be a catalytic intermediate. A DFT study showed that the mechanism of the platinum-catalyzed allylation of amines with allyl alcohols differs from the palladium-catalyzed process, since it involves an associative ligand-exchange step involving formation of a tetracoordinate 18-VE complex. This DFT study also revealed that ligands with large bite angles disfavor the formation of platinum hydride complexes and therefore the formation of a bicyclic aminopropyl complex, which is a thermodynamic sink. Finally, a combination of 5 and a proton source was shown to efficiently catalyze the allylation of a broad variety of amines with allyl alcohols under mild conditions. 相似文献
17.
Dr. Israel Fernández Prof. Dr. Fernando P. Cossío Dr. Abel de Cózar Prof. Dr. Agustí Lledós Prof. Dr. José Luis Mascareñas 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(40):12147-12157
The thermal [4+3] cycloaddition reaction between allenes and tethered dienes (1,3‐butadiene and furan) assisted by transition metals (AuI, AuIII, PdII, and PtII) was studied computationally within the density functional theory framework and compared to the analogous non‐organometallic process in terms of activation barriers, synchronicity and aromaticity of the corresponding transition states. It was found that the metal‐mediated cycloaddition reaction is concerted and takes place via transition structures that can be even more synchronous and more aromatic than their non‐organometallic analogues. However, the processes exhibit slightly to moderately higher activation barriers than the parent cycloaddition involving the hydroxyallylic cation. The bond polarization induced by the metal moiety is clearly related to the interaction of the transition metal with the allylic π* molecular orbital, which constitutes the LUMO of the initial reactant. Finally, replacement of the 1,3‐butadiene by furan caused the transformation to occur stepwise in both the non‐organometallic and metal‐assisted processes. 相似文献
18.
Tobisch S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(46):13814-13824
The present computational mechanistic study comprehensively explores alternative scenarios for activation of the amine-linked diene C=C linkage toward C-N ring closure in intramolecular hydroamination of a prototypical aminodiene by a well-characterised lanthanocene-amido catalyst. Firstly, the non-insertive mechanism by Scott featuring ring closure with concomitant amino proton delivery onto the diene unit has been explored and key features have been defined. This scenario has been compared with the classical stepwise insertion mechanism that involves rapid substrate association/dissociation equilibria for the 3t-S1 resting state and also for azacycle intermediates 4s, 4a, facile and reversible exocyclic migratory diene insertion into the La-N(amido) σ-bond, linked to turnover-limiting La-C azacycle aminolysis. The Ln-N σ-bond insertive mechanism prevails for the examined intramolecular hydroamination of (4E,6)-heptadienylamine 1t by [Cp*(2)La-CH(TMS)(2)] starting material 2.The following aspects are in support of this mechanism: 1) the derived rate law is consistent with the observed empirical rate law; 2) the assessed effective barrier for turnover-limiting aminolysis does agree remarkably well with empirically determined Eyring parameters; 3) the ring-ether double-bond selectivity is consistently elucidated. This study reveals that the non-insertive mechanism is not achievable for the particular lanthanocene-amido catalyst and furthermore cannot account for the observed product spectrum. Notwithstanding of these findings, the non-insertive mechanism cannot be discarded a priori for intramolecular aminodiene hydroamination. Spatial demands around the lanthanide centre influence the two mechanisms differently. The Ln-N σ-bond insertive mechanism critically relies on a sufficiently accessible lanthanide and enhanced encumbrance renders cyclisation and aminolysis steps less accessible kinetically. It contrasts with the non-insertive mechanism, where greater lanthanide protection has a rather modest influence. The present study indicates that the non-insertive mechanism would prevail if the lanthanide centre were to be protected effectively against C=C bond approach. Notably, a different product spectrum would be expected for aminodiene hydroamination following the insertive or non-insertive route. 相似文献
19.
20.
Triesterase and Promiscuous Diesterase Activities of a Di‐CoII‐Containing Organophosphate Degrading Enzyme Reaction Mechanisms
下载免费PDF全文
![点击此处可从《Chemistry (Weinheim an der Bergstrasse, Germany)》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Dr. Marta E. Alberto Gaspar Pinto Prof. Nino Russo Dr. Marirosa Toscano 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(9):3736-3745
The reaction mechanism for the hydrolysis of trimethyl phosphate and of the obtained phosphodiester by the di‐CoII derivative of organophosphate degrading enzyme from Agrobacterium radiobacter P230(OpdA), have been investigated at density functional level of theory in the framework of the cluster model approach. Both mechanisms proceed by a multistep sequence and each catalytic cycle begins with the nucleophilic attack by a metal‐bound hydroxide on the phosphorus atom of the substrate, leading to the cleavage of the phosphate‐ester bond. Four exchange‐correlation functionals were used to derive the potential energy profiles in protein environments. Although the enzyme is confirmed to work better as triesterase, as revealed by the barrier heights in the rate‐limiting steps of the catalytic processes, its promiscuous ability to hydrolyze also the product of the reaction has been confirmed. The important role played by water molecules and some residues in the outer coordination sphere has been elucidated, while the binuclear CoII center accomplishes both structural and catalytic functions. To correctly describe the electronic configuration of the d shell of the metal ions, high‐ and low‐spin arrangement jointly with the occurrence of antiferromagnetic coupling, have been herein considered. 相似文献