首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This paper presents a rigorous study, for Fermi–Pasta–Ulam (FPU) chains with large particle numbers, of the formation of a packet of modes with geometrically decaying harmonic energies from an initially excited single low-frequency mode and the metastability of this packet over longer time scales. The analysis uses modulated Fourier expansions in time of solutions to the FPU system, and exploits the existence of almost-invariant energies in the modulation system. The results and techniques apply to the FPU α- and β-models as well as to higher-order nonlinearities. They are valid in the regime of scaling between particle number and total energy in which the FPU system can be viewed as a perturbation to a linear system, considered over time scales that go far beyond standard perturbation theory. Weak non-resonance estimates for the almost-resonant frequencies determine the time scales that can be covered by this analysis.  相似文献   

3.
In this paper, we propose a stable heat jet approach for accurate temperature control of the nonlinear Fermi-Pasta-Ulam beta(FPU-β) chain. First, we design a stable nonlinear boundary condition, with coefficients determined by a machine learning technique. Its stability can be proved rigorously. Based on this stable boundary condition, we derive a two-way boundary condition complying with phonon heat source, and construct stable heat jet approach. Numerical tests illustrate the stability of the boundary condition and the effectiveness in eliminating boundary reflections. Furthermore, we extend the boundary condition formulation with more atoms, and train the coefficients to eliminate extreme short waves by machine learning technique. Under this extended boundary condition, the heat jet approach is effective for high temperature, and may be adopted for multiscale computation of atomic motion at finite temperature.  相似文献   

4.
Interfacial wave characteristics were studied experimentally in horizontal oil–water pipe flows during stratified flow and at the transition to dual continuous flow, where drops of one phase appear into the other (onset of entrainment). The experimental investigations were carried out in a stainless steel test section with 38 mm ID with water and oil (density 828 kg/m3and viscosity 5.5 mPas) as test fluids. Wave characteristics were obtained with a high speed video camera and a parallel wires conductivity probe that measured the instantaneous fluctuations of the interface. Experiments were conducted at 2 m and at 6 m from the inlet. Visual observations revealed that no drops are formed when interfacial waves are absent. It was also found that waves have to reach a certain amplitude before drops can detach from their crests. Wave amplitudes are increased as the superficial velocities of both phases increase. In the stratified region, the mean wave amplitude decreases by increasing the oil–water input ratio while mean wavelength increases as the slip velocity between the two-phase decreases. At the onset of entrainment, the mean amplitude and length are found to be a function of the relative velocity between the oil and water layers and of the turbulence in each layer.  相似文献   

5.
L-valve is often used as a non-mechanical valve for the circulation of solids in gas–solids fluidized bed (GSFB) due to its advantages in simple construction and easy control. The information on solids circulation rate as well as the hydrodynamics performance of the CFB with L-valve is of great importance for its better control and design. This paper proposes a Eulerian-Eulerian approach based numerical model integrating the computational fluid dynamics (CFD) with turbulent model, the kinetic theory of granular flow (KTGF) and the drag model, thus the solids circulation rate and the local phase velocity as well as solids volume fraction can be predicted simultaneously. With this model, the hydrodynamics performance of the full loop GSCFB with a L-valve is analyzed in detail. It is found that the drag model affects the simulation significantly and the (energy minimization multiscale) EMMS method shows good performance in the full-loop simulation of GSCFB.  相似文献   

6.
In this study, the differential quadrature (DQ) method was used to simulate the eccentric Couette–Taylor vortex flow in an annulus between two eccentric cylinders with rotating inner cylinder and stationary outer cylinder. An approach combining the SIMPLE (semi-implicit method for pressure-linked equations) and DQ discretization on a non-staggered mesh was proposed to solve the time-dependent, three-dimensional incompressible Navier–Stokes equations in the primitive variable form. The eccentric steady Couette–Taylor flow patterns were obtained from the solution of three-dimensional Navier–Stokes equations. The reported numerical results for steady Couette flow were compared with those from Chou [1], and San and Szeri [2]. Very good agreement was achieved. For steady eccentric Taylor vortex flow, detailed flow patterns were obtained and analyzed. The effect of eccentricity on the eccentric Taylor vortex flow pattern was also studied.  相似文献   

7.
The paper presents an integral technique simulating all phases of a landslide-driven tsunami. The technique is based on the numerical solution of the system of Navier–Stokes equations for multiphase flows. The numerical algorithm uses a fully implicit approximation method, in which the equations of continuity and momentum conservation are coupled through implicit summands of pressure gradient and mass flow. The method we propose removes severe restrictions on the time step and allows simulation of tsunami propagation to arbitrarily large distances. The landslide origin is simulated as an individual phase being a Newtonian fluid with its own density and viscosity and separated from the water and air phases by an interface. The basic formulas of equation discretization and expressions for coefficients are presented, and the main steps of the computation procedure are described in the paper. To enable simulations of tsunami propagation across wide water areas, we propose a parallel algorithm of the technique implementation, which employs an algebraic multigrid method. The implementation of the multigrid method is based on the global level and cascade collection algorithms that impose no limitations on the paralleling scale and make this technique applicable to petascale systems. We demonstrate the possibility of simulating all phases of a landslide-driven tsunami, including its generation, propagation and uprush. The technique has been verified against the problems supported by experimental data. The paper describes the mechanism of incorporating bathymetric data to simulate tsunamis in real water areas of the world ocean. Results of comparison with the nonlinear dispersion theory, which has demonstrated good agreement, are presented for the case of a historical tsunami of volcanic origin on the Montserrat Island in the Caribbean Sea.  相似文献   

8.
Shock diffraction over a two-dimensional wedge and subsequent shock–vortex interaction have been numerically simulated using the AUSM $+$ + scheme. After the passage of the incident shock over the wedge, the generated tip vortex interacts with a reflected shock. The resulting shock pattern has been captured well. It matches the existing experimental and numerical results reported in the literature. We solve the Navier–Stokes equations using high accuracy schemes and extend the existing results by focussing on the Kelvin–Helmholtz instability generated vortices which follow a spiral path to the vortex core and on their way interact with shock waves embedded within the vortex. Vortex detection algorithms have been used to visualize the spiral structure of the initial vortex and its final breakdown into a turbulent state. Plotting the dilatation field we notice a new source of diverging acoustic waves and a lambda shock at the wedge tip.  相似文献   

9.
10.
Roughly one-third of all strokes are caused by an embolus traveling to a cerebral artery and blocking blood flow in the brain. The objective of this study is to gain a detailed understanding of the dynamics of embolic particles within arteries. Patient computed tomography image is used to construct a three-dimensional model of the carotid bifurcation. An idealized carotid bifurcation model of same vessel diameters was also constructed for comparison. Blood flow velocities and embolic particle trajectories are resolved using a coupled Euler–Lagrange approach. Blood is modeled as a Newtonian fluid, discretized using the finite volume method, with physiologically appropriate inflow and outflow boundary conditions. The embolus trajectory is modeled using Lagrangian particle equations accounting for embolus interaction with blood as well as vessel wall. Both one- and two-way fluid–particle coupling are considered, the latter being implemented using momentum sources augmented to the discretized flow equations. It was observed that for small-to-moderate particle sizes (relative to vessel diameters), the estimated particle distribution ratio—with and without the inclusion of two-way fluid–particle momentum exchange—were found to be similar. The maximum observed differences in distribution ratio with and without the coupling were found to be higher for the idealized bifurcation model. Additionally, the distribution was found to be reasonably matching the volumetric flow distribution for the idealized model, while a notable deviation from volumetric flow was observed in the anatomical model. It was also observed from an analysis of particle path lines that particle interaction with helical flow, characteristic of anatomical vasculature models, could play a prominent role in transport of embolic particle. The results indicate therefore that flow helicity could be an important hemodynamic indicator for analysis of embolus particle transport. Additionally, in the presence of helical flow, and vessel curvature, inclusion of two-way momentum exchange was found to have a secondary effect for transporting small to moderate embolus particles—and one-way coupling could be used as a reasonable approximation, thereby causing substantial savings in computational resources.  相似文献   

11.
Leakage from underground pipes could result in foundations being undermined and cause damage to adjacent infrastructure. Soil particles surrounding the leaking area could be mobilised, displaced, and even washed out of the soil matrix by the leaking fluid, generating a void or cavity. A two-dimensional simulation using a coupled discrete element method and lattice Boltzmann method (DEM–LBM) has been used to investigate the behaviour of a soil bed subject to a locally injected fluid, which represents a leak in a pipe. Various values of inter-particle surface energy were also adopted to model the mechanical effects of cohesive particles. The results suggest that the inter-particle surface energy greatly influences the bed response with respect to the leaking fluid, including the excess pressure initiating the cavity, the cavity shape and its evolution rate.  相似文献   

12.
An experimental method for simultaneously measuring the velocity fields on the air and water side of unsteady breaking waves is presented. The method includes a novel technique for seeding the air flow such that the air velocity can be resolved in the absence of wind. Low density particles that have large Stokes drag and ability to respond to high-frequency flow fluctuations are used to seed the air flow. Multi-camera, multi-laser particle image velocimetry setups are applied to small-scale unsteady breaking waves, yielding fully time-resolved velocity fields. The surface tension of the fluid is altered and controlled to form spilling breaking waves. Results for the velocity and vorticity fields of representative spilling breakers, which show shedding of an air-side vortex and well-documented generation of water-side vorticity, are presented and discussed.  相似文献   

13.
14.
Herein, an enhanced spectral finite element (SFE) formulation to calculate the time–transient response in cylindrical waveguides is proposed. The original aspect over SFE-based formulations consists in the possibility to account for the effect of material absorption, i.e. guided waves attenuation, on the calculation of the time–transient response.First, the damped steady-state response is constructed by a weighted superposition of the waveguide modal properties obtained from the spectral decomposition of the governing wave equation. To this purpose an enhanced spectrally formulated finite element is developed, in which material damping is included allowing for complex stress–strain viscoelastic constitutive relations in force of the correspondence principle. Dispersive modal properties for the damped waveguide (phase velocity, energy velocity, attenuation and wavestructures) follow straightforwardly by simple formulae. Next, the frequency response of the problem is calculated by weighting the modal data and the spectrum of the applied time-dependent force via Cauchy residue theorem. Finally, the inverse Fourier transform of the frequency response leads to the time–transient response for propagative damped guided waves.The approach is not restricted to any anisotropy degree, holds for any linear viscoelastic constitutive relation that can be characterized and formulated in the frequency domain and it can be applied to SFE formulations for arbitrary cross-section waveguides. A study on guided waves propagating in a scheduled 4.in-40 ANSI steel pipe is presented, where the steel is considered first as perfectly elastic and then as an hysteretic viscoelastic medium, in order to show the effect of material absorption on the time–transient response.  相似文献   

15.
16.
ABSTRACT

This paper presents the numerical results of a shape optimisation problem with regard to delaying the transition of a Navier–Stokes flow field from laminar to turbulent by using the theory developed by Nakazawa and Azegami. The theory was reviewed within the framework of functional analysis and updated with another expression of the shape derivative with respect to the objective function. A computer program was developed with the FreeFEM++. Numerical analyses were performed for two types of problems: a two-dimensional Poiseuille flow field with a sudden expansion and a two-dimensional uniform flow field around an isolated body. From the first example, two local minimum points of symmetric and asymmetric flow fields were determined, and the asymmetric flow field was found to be more stable. With regard to the second example, we reached the local minimum point of an elliptical shape, and infrequently determined a solution converging to an elliptical shape with the bluff in the leeward direction. By comparison, the superiority of the elliptical shape was obvious.  相似文献   

17.
Deng  Gao-Fu  Gao  Yi-Tian  Su  Jing-Jing  Ding  Cui-Cui  Jia  Ting-Ting 《Nonlinear dynamics》2020,99(2):1039-1052
Nonlinear Dynamics - Fluid mechanics has the applications in a wide range of disciplines, such as oceanography, astrophysics, meteorology, and biomedical engineering. Under investigation in this...  相似文献   

18.
Wang  Xiu-Bin  Tian  Shou-Fu  Feng  Lian-Li  Yan  Hui  Zhang  Tian-Tian 《Nonlinear dynamics》2017,88(3):2265-2279
Nonlinear Dynamics - Under investigation in this paper is a generalized (3 + 1)-dimensional variable-coefficient BKP equation, which can be used to describe the propagation of...  相似文献   

19.
We study a one-dimensional free boundary problem for a non-linear diffusion–convection equation whose diffusivity is heterogeneous in space as well as being non-linear. Under the Bäcklund transformation the problem is reduced to an associated free boundary problem. We prove the existence and uniqueness, local in time, of the solution by using the Friedman Rubinstein integral representation method and the Banach contraction theorem.  相似文献   

20.
In this paper, a problem of a crack in an orthotropic strip is studied under plane strain conditions. It is assumed that normal displacements and shear stresses do not act on neither of the boundaries of the strip. Cauchy-type singular integral equation for the crack problem is derived by using the theory of plane elasticity and the Fourier transformation technique. A quadrature collocation approach is adopted for the numerical solutions of the singular integral equation. The effect of relative thickness and mechanical properties of strip on Mode I stress intensity factors (SIFs) are examined under different loading conditions. Some sample results are given for SIFs; also, material orthotropy and geometrical effects are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号