首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
基于线性三维弹性理论,采用勒让德正交多项式展开法,推导了波沿正交各向异性材料非主轴方向传播时的Lamb波耦合波动方程,并对耦合波动方程进行了数值求解。为验证该方法的适用性和正确性,首先将此方法应用于各向同性材料,并与已知的数据结果进行了比较;然后以单向纤维增强复合材料为例,计算了耦合Lamb波沿不同的非主轴方向传播时的相速度频散曲线,并分别研究了传播方向改变时低阶模态Lamb波和高阶模态Lamb波频散特性的变化。最后,针对潜在用于各向异性复合材料结构健康监测的耦合Lamb波低阶模态,给出了其在不同传播方向时的相速度分布和群速度分布。同时,结合低阶模态Lamb波的位移分布特性和材料的各向异性特点,阐释了S0模态对波的传播方向变化最为敏感的原因。  相似文献   

2.
曲面曲率对Rayleigh波传播特性的影响   总被引:1,自引:1,他引:1  
王子昆  金峰 《力学学报》2002,34(6):895-903
对任意形状的均匀各向同性线弹性曲面物体,用 WKB~(1)方法求解了沿曲面传播的Rayleigh表面波的运动微分方程,同时考虑了波传播方向及其垂直方向曲面曲率对波的穿透性的影, 所获波动方程的势函数解答表明,在一般情况下垂直波传播方向的曲面曲率对波的穿透深度的影响是不容忽视的.进而以同种介质平面表面情况下的Rayleigh面波的传播特性为基准,给出了曲面曲率引起波数或波速变化的解析表达式.通过理论分析和数值算例,描述了曲面上Rayleigh面波传播行为的一些基本特征.  相似文献   

3.
The current theoretical study deals with computation of Stoneley waves along a solid–solid interface and Scholte waves (also called Scholte-Gogoladze) along a solid–liquid interface by reciprocity considerations. Closed-form solutions of the wave motions generated by a time-harmonic line load applied in two bonded elastic half-spaces of different material properties are derived in a simple manner. In order to perform direct applications of reciprocity theorems, we introduce in this article new expressions for the displacements of free interface waves. Reciprocity relations between an actual state, interface wave motion generated by a time-harmonic line load, and a virtual state, an appropriately chosen free wave traveling along the interface, are derived. Scattered amplitudes of Stoneley waves and Scholte waves due to the load are thus computed. To show application of the obtained results, scattering of Stoneley wave by a delamination at the interface is then studied.  相似文献   

4.
修晨曦  楚锡华 《力学学报》2018,50(2):315-328
基于颗粒材料冲击与波动响应特性的调控波传播行为的超材料设计受到广泛关注,设计这类材料需要对颗粒材料的波传播机制及调控机理有深入认识. 波在颗粒材料中传播的频散现象及频率带隙等行为与材料的非均匀性密切相关,通常讨论频散现象是基于弹性理论框架建立微结构连续体或高阶梯度连续体等广义连续体模型来进行. 本研究基于细观力学给出了一个颗粒材料的微形态连续体模型. 在该模型中,考虑了颗粒的平动和转动,且颗粒间的相对运动分解为两部分:即宏观平均运动和细观真实运动. 基于此分解,提出了一个完备的变形模式,得到了对应于不同应变及颗粒间运动的宏细观本构关系. 结合宏观变形能的细观变形能求和表达式,获得了基于细观量表示的宏观本构模量. 应用所建议模型考察了波在弹性颗粒介质的传播行为,给出了不同形式的波的频散曲线,结果显示此模型具有预测频率带隙的能力.   相似文献   

5.
With the advent of left-handed magnetic materials, it is desirable to develop high-performance wave devices based on their novel properties of wave propagation. This letter reports the special properties of elastic wave propagation in magnetoelastic multilayered composites with negative permeability as comparecd to those in counterpart structures with positlve permeability. These novel properties of elastic waves are discerned from the diversified dispersion curves, which represent the propagation and attenuation characteristics of elastic waves. To compute these dispersion curves, the method of reverberation-ray matrix is extended for the analysis of elastic waves in magnctoelastic multilayered composites. Although only the results of a single piezomagnetic and a binary magnetoelastic layers with mechanically free and magnetically short surfaces as well as pelrfect interface are illustrated in the numerical examples, the analysis is applicable lo magnetoelastic multilayered structures with other kinds of boundaries/interfaces.  相似文献   

6.
Elastic solitary waves resulting from Hertzian contact in one-dimensional (1-D) granular chains have demonstrated promising properties for wave tailoring such as amplitude-dependent wave speed and acoustic band gap zones. However, as load increases, plasticity or other material nonlinearities significantly affect the contact behavior between particles and hence alter the elastic solitary wave formation. This restricts the possible exploitation of solitary wave properties to relatively low load levels (up to a few hundred Newtons). In this work, a method, which we term preconditioning, based on contact pre-yielding is implemented to increase the contact force elastic limit of metallic beads in contact and consequently enhance the ability of 1-D granular chains to sustain high-amplitude elastic solitary waves. Theoretical analyses of single particle deformation and of wave propagation in a 1-D chain under different preconditioning levels are presented, while a complementary experimental setup was developed to demonstrate such behavior in practice. The experimental results show that 1-D granular chains with preconditioned beads can sustain high amplitude (up to several kN peak force) solitary waves. The solitary wave speed is affected by both the wave amplitude and the preconditioning level, while the wave spatial wavelength is still close to 5 times the preconditioned bead size. Comparison between the theoretical and experimental results shows that the current theory can capture the effect of preconditioning level on the solitary wave speed.  相似文献   

7.
Wave motion in finite element models presents some characteristics different from thoseof wave motion in continuum,which leads to the errors and other special phenomena in finite elementsimulation of wave motion.The wave propagation in a 3-D finite element model is studied by utilizingthe formal solution in the paper,and the corresponding dispersion relations are derived.Then the mainproperties of wave motion in 3-D grids such as dispersion,cut-off frequency and polarization drift arediscussed.Characteristics different from those of wave motion in 2—D grids are revealed.  相似文献   

8.
横观各向同性液体饱和多孔介质中平面波的传播   总被引:11,自引:2,他引:11  
汪越胜  章梓茂 《力学学报》1997,29(3):257-268
基于孔隙介质的Biot理论1,研究了横观各向同性液体饱和多孔介质中平面波的传播特性。首先导出了波传播的特征方程并给出了其解析解,结果显示:有4种不同波速的平面体波传播;第一准纵波,第二准纵波,准横波和反平面横波。文中给出了波速和衰减的解析表达式,数值计算了频散曲线和衰减曲线,并讨论了各类准体波位移之间的耦合关系。  相似文献   

9.
The three-dimensional interactions of a perturbed premixed flame interface with a planar incident shock wave and its reflected shock waves are numerically simulated by solving the compressible, reactive Navier–Stokes equations with the high-resolution scheme and a single-step chemical reaction. The effects of the initial incident shock wave strength (Mach number) and the initial perturbation pattern of interface on the interactions are investigated. The distinct properties of perturbation growth on the flame interface during the interactions are presented. Our results show that perturbation growth is mainly attributed to the flame stretching and propagation. The flame stretching is associated with the larger-scale vortical flow due to Richtmyer–Meshkov instability while the flame propagation is due to the chemical reaction. The mixing properties of unburned/burned gases on both sides of the flame are quantitatively analyzed by using integral and statistical diagnostics. The results show that the large-scale flow due to the vortical motion always plays a dominating role during the reactive interaction process; however, the effect of chemistry becomes more important at the later stage of the interactions, especially for higher Mach number cases. The scalar dissipation due to the molecular diffusion is always small in the present study and can be negligible.  相似文献   

10.
The reflection and refraction of anti-plane shear waves from an interface separating half-spaces with different moduli is well understood in the linear theory of elasticity. Namely, an oblique incident wave gives rise to a reflected wave that departs at the same angle and to a refracted wave that, after transmission through the interface, departs at a possibly different angle. Here we study similar issues for a material that admits mobile elastic phase boundaries in anti-plane shear. We consider an energy minimal equilibrium state in anti-plane shear involving a planar phase boundary that is perturbed due to an incident wave of small magnitude. The phase boundary is allowed to move under this perturbation. As in the linear theory, the perturbation gives rise to a reflected and a refracted wave. The orientation of these waves is independent of the phase boundary motion and determined as in the linear theory. However, the phase boundary motion affects the amplitudes of the departing waves. Perturbation analysis gives these amplitudes for general small phase boundary motion, and also permits the specification of the phase boundary motion on the basis of additional criteria such as a kinetic relation. A standard kinetic relation is studied to quantify the subsequent energy partitioning and dissipation on the basis of the properties of the incident wave.  相似文献   

11.
相变可以改变材料的性质,从而严重影响波在介质中传播的结构。采用考虑静水压力和偏应力联合作用的增量型相变本构模型,研究了在拉(压)-扭联合作用下半无限长TiNi合金薄壁管内相变复合波的传播规律。基于广义特征理论分析了相变复合波的特征波速及简单波解的基本性质。利用数值方法研究了两种典型情况下管内相变耦合波传播的规律,管内传播的应力路径和波的结构与初始状态及加载幅值有关,展现出和普通弹塑性材料截然不同的性质。  相似文献   

12.
Shock waves in homogeneous materials in the absence of phase transitions are understood to have a one-wave structure. However, upon loading of a layered heterogeneous material system a two-wave structure is obtained––a leading shock front followed by a complex pattern that varies with time. This dual shock-wave pattern can be attributed to material architecture through which the shock wave propagates, i.e. the impedance (and geometric) mismatch present at various length scales, and nonlinearities arising from material inelasticity and failure.The objective of the present paper is to provide a better understanding of the role of material architecture in determining the structure of weak shock waves in 2-D layered material systems. Normal plate-impact experiments are conducted on 2-D layered material targets to obtain both the precursor decay and the late-time dispersion. The particle velocity at the free surface of the target plate is measured by using a multi-beam VALYN VISAR. In order to understand the effects of layer thickness and the distance of wave propagation on elastic precursor decay and late-time dispersion several different targets with various layer and target thicknesses are employed. Moreover, in order to understand the effects of material inelasticity both elastic–elastic and elastic–viscoelastic bilaminates are utilized.The results of these experiments are interpreted by using asymptotic techniques to analyze propagation of acceleration waves in 2-D layered material systems. The analysis makes use of the Laplace transform and Floquet theory for ODE’s with periodic coefficients [Asymptotic solutions for wave propagation in elastic and viscoelastic bilaminates. In: Developments in Mechanics, Proceedings of the 14th Mid-Eastern Mechanics Conference, vol. 26, no. 8, pp. 399–417]. Both wave-front and late-time solutions for step-pulse loading on layered half-space are compared with the experimental observations. The results of the study indicate that the structure of acceleration waves is strongly influenced by impedance mismatch of the layers constituting the laminates, density of interfaces, distance of wave propagation, and the material inelasticity.  相似文献   

13.
This paper presents a theoretical study of the speeds of plastic waves in rate-independent elastic–plastic materials with anisotropic elasticity. It is shown that for a given propagation direction the plastic wave speeds are equal to or lower than the corresponding elastic speeds, and a simple expression is provided for the bound on the difference between the elastic and the plastic wave speeds. The bound is given as a function of the plastic modulus and the magnitude of a vector defined by the current stress state and the propagation direction. For elastic–plastic materials with cubic symmetry and with tetragonal symmetry, the upper and lower bounds on the plastic wave speeds are obtained without numerically solving an eigenvalue problem. Numerical examples of materials with cubic symmetry (copper) and with tetragonal symmetry (tin) are presented as a validation of the proposed bounds. The lower bound proposed here on the minimum plastic wave speed may also be used as an efficient alternative to the bifurcation analysis at early stages of plastic deformation for the determination of the loss of ellipticity.  相似文献   

14.
Summary In this paper, the reflection and refraction of a plane wave at an interface between two half-spaces composed of triclinic crystalline material is considered. It is shown that due to incidence of plane wave three types of waves, namely quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH), will be generated governed by the propagation condition involving the acoustic tensor. A simple procedure has been presented for the calculation of all the three phase velocities of the quasi waves. It has been established that the direction of particle motion is neither parallel nor perpendicular to the direction of propagation. Relations are established between directions of motion and propagation, respectively. The expressions for reflection and refraction coefficients of qP, qSV and qSH waves are obtained. Numerical results of reflection and refraction coefficients are presented for different types of anisotropic media and for different types of incident waves. Graphical representations have been made for incident qP waves, and for incident qSV and qSH waves numerical data are presented in tables.The work was completed while the author was visiting the University of Kaiserslautern, Department of Geomathematics as Visiting Professor. The Author is grateful to Professor Dr. W. Freeden for providing DAAD fellowship and all the facilities for conducting research, as well as to Dr. V.Michel for various discussions about the research work and also for all kinds of help during his stay at Kaiserslautern, Germany. This award is very gratefully acknowledged.  相似文献   

15.
In [1] a system of equations was obtained for the case of a potential motion of an ideal incompressible homogeneous fluid; the system described the propagation of a train of waves in a medium with slowly varying properties, the motion in the train being characterized by a wave vector and a frequency. A solitary wave is a particular case of a wave train in which the length of the waves in the train is large. In [2, 3] a quasilinear system of partial differential equations was obtained which described two-dimensional and three-dimensional motion of a solitary wave in a layer of liquid of variable depth. It follows from this system that if the unperturbed state of the liquid is the quiescent state, then some integral quantity (the average wave energy [2–4]), referred to an element of the front, is preserved during the course of the motion. This fact is also valid for a train of waves, and can be demonstrated to be so upon applying the formalism of [1] to a Lagrangian similar to that used in [2]. In the present paper we obtain, for the case of a layer of liquid of constant depth, a solution in the form of simple waves for a system, equivalent to the system obtained in [3], describing the motion of a solitary wave and also the motion of a train of waves. We show that it is possible to have tilting of simple waves, leading in the case considered here to the formation of corner points on the wave front. We consider several examples of initial perturbations, and we obtain their asymptotics as t→∞. We make our presentation for the solitary wave case; however, in view of our statement above, the results automatically carry over to the case of a train of waves.  相似文献   

16.
论文基于线性磁电弹性理论,研究了具有扇环形截面的多铁性柱形波导中的弹性波传播问题.利用波动势函数法,解析推导获得波动特征方程,进而得到弥散关系.通过算例研究了波传播的关键特性,深入分析了弥散曲线、相速度曲线和截止频率变化情况.结果显示,波的相速度和截止频率非常依赖于波导结构的扇环截面半顶角、内外径比和层合界面的弱界面系数,对于给定材料的波导结构,这些参数也是控制其弥散特性的重要影响因素.值得指出的是,在柱面应力自由的边界条件下相速度曲线中存在独特的频率带隙,而这通常是在周期结构中才会出现.  相似文献   

17.
在三维气相爆轰数值研究中,网格精度和计算域的规模导致网格数占有非常庞大的计算资源,进而给数值模拟带来了极大的挑战。本文针对这一难题,采用5阶WENO格式对带化学反应Euler方程组进行空间离散,基于MPI(MessagePassingInterface)并行模式开发了高精度动态并行代码,并对爆轰波在带有障碍物的三维方形管道中的传播过程进行计算。计算结果表明,高精度动态并行计算能够很好的模拟三维气相爆轰波在大尺寸管道中的传播,不仅提高了计算效率,而且提高了爆轰波阵面的分辨率。与高精度静态并行相比,高精度动态并行计算减少了界面数据通信时间,从而进一步提高了计算效率。因此,高精度动态并行程序为探究三维气相爆轰新的物理机制提供有效的手段。  相似文献   

18.
Acoustic wave propagation from surrounding medium into a soft material can generate acoustic radiation stress due to acoustic momentum transfer inside the medium and material, as well as at the interface between the two. To analyze acoustic-induced deformation of soft materials, we establish an acoustomechanical constitutive theory by com-bining the acoustic radiation stress theory and the nonlinear elasticity theory for soft materials. The acoustic radiation stress tensor is formulated by time averaging the momen-tum equation of particle motion, which is then introduced into the nonlinear elasticity constitutive relation to construct the acoustomechanical constitutive theory for soft materials. Considering a specified case of soft material sheet subjected to two counter-propagating acoustic waves, we demonstrate the nonlinear large deformation of the soft material and ana-lyze the interaction between acoustic waves and material deformation under the conditions of total reflection, acoustic transparency, and acoustic mismatch.  相似文献   

19.
This work is concerned with the wave propagation and their reflection and transmission from a plane interface between two different electro-microelastic solid half-spaces in perfect contact. It is found that there exist five basic waves in an infinite electro-microelastic solid, namely an independent longitudinal micro-rotational wave, two sets of coupled longitudinal waves influenced by the electric effect, and two sets of coupled transverse waves. The existence of the two sets of coupled longitudinal waves is new. In the absence of microstretch and electric effects, these two coupled longitudinal waves reduce to a longitudinal displacement wave of micropolar elasticity. Amplitude and energy ratios of various reflected and transmitted waves are presented when (i) a set of coupled longitudinal wave is made incident and (ii) a set of coupled transverse wave is made incident. Numerical computations have been performed for a particular model and the variations of amplitude and energy ratios are obtained against the angle of incidence. The results obtained are depicted graphically. It has been verified that the sum of energy ratios is equal to unity at the interface and the amplitude ratios of reflected and transmitted waves depend upon the angle of incidence, frequency and elastic properties of the media. Results of some earlier workers have also been reduced from the present formulation.  相似文献   

20.
梯度密度黏弹性材料中波的传播比较复杂。为了研究其在冲击载荷作用下黏弹性响应特征,基于控制方程的Euler形式,利用Laplace变换,得到了这种材料中的波传播规律的一个理论公式;并据此分析了双层周期性黏弹性介质中的应力情况。选择具有梯度密度特性的钛-硼化钛(Ti-TiB2)材料和碳纤维树脂材料,采用不同的叠合方向和方式,利用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)加载装置进行了动态冲击实验,并用三波法对得到的实验结果进行处理。同时,采用数值Laplace逆变换方法,结合SHPB测得的入射波与透射波数据,使用推导的理论公式计算出理论解,并与实验结果进行了比较。结果表明:(1)梯度钛-硼化钛材料由于内界面和叠层界面的存在,表现出一定的黏性特性;单层Ti-TiB2材料的计算结果和三波法分析得到的结果基本一致,双层Ti-TiB2材料叠合后的计算结果与三波法分析结果存在一定的差异。(2)双层碳纤维树脂材料表现出较强的黏弹性特征,应力波的衰减幅度较大,三波法分析结果与该材料的冲击性能有较大的差异。由此可知,无论是细微观结构特征产生的黏性,还是材料本身的黏性,对材料动力学行为的影响都不可忽略。。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号