首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this paper we have given an analytic excitation solution of exploding wave in infinite elastic body with growing spherical inner boundary,and the convergence region of series in this solution determined.Some characters of the displacement wave have also been discussed.  相似文献   

2.
The present work deals with the possibility of propagation of torsional surface wave in fluid saturated poroelastic layer lying over nonhomogeneous elastic half space. Both the media are assumed to be under compressive initial stress. The half space has two types of inhomogeneity, viz; hyperbolic and quadratic. The dispersion equation for torsional wave in porous layer has been derived and observed that the presence of fluid in pores increases the velocity of the torsional surface wave but the phase velocity diminishes due to the presence of compressive initial stress in the porous layer. It is also observed that the velocity of the torsional surface wave increases due to the increase of initial stress in inhomogeneous half space. The inhomogeneity factor due to quadratic and hyperbolic variations in rigidity, density and initial stress of the medium decreases the phase velocity as it increases.  相似文献   

3.
The paper presents the effect of a rigid boundary on the propagation of torsional surface waves in a porous elastic layer over a porous elastic half-space using the mechanics of the medium derived by Cowin and Nunziato (Cowin, S. C. and Nunziato, J. W. Linear elastic materials with voids. Journal of Elasticity, 13(2), 125–147 (1983)). The velocity equation is derived, and the results are discussed. It is observed that there may be two torsional surface wave fronts in the medium whereas three wave fronts of torsional surface waves in the absence of the rigid boundary plane given by Dey et al. (Dey, S., Gupta, S., Gupta, A. K., Kar, S. K., and De, P. K. Propagation of torsional surface waves in an elastic layer with void pores over an elastic half-space with void pores. Tamkang Journal of Science and Engineering, 6(4), 241–249 (2003)). The results also reveal that in the porous layer, the Love wave is also available along with the torsional surface waves. It is remarkable that the phase speed of the Love wave in a porous layer with a rigid surface is different from that in a porous layer with a free surface. The torsional waves are observed to be dispersive in nature, and the velocity decreases as the oscillation frequency increases.  相似文献   

4.
Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.  相似文献   

5.
The interaction between an air shock wave and a rigid wall covered by a porous screen is investigated numerically and experimentally. A mathematical two velocity with two stress tensors model is used for studying the wave processes in saturated porous media. The process of reflection of a step-type wave from a rigid wall covered with a porous layer is considered, the effect of the porous medium and wave parameters on the reflection is analyzed, and the numerical results are compared with the experimental data.Received: 30 July 2002, Accepted: 24 December 2002, Published online: 27 May 2003  相似文献   

6.
P. Villaggio 《Meccanica》1993,28(2):153-157
A train of plane waves travels in an elastic semi-infinite medium bounded by a corrugated line having a sinusoidal shape. When the primary waves impinge against the surface, a new train of reflected waves is generated, and the question arises of determining the effect of roughnesses of the boundary on the shape and amplitude of the reflected waves.The case of perpendicular incidence may be treated without difficulty by extending a solution found by Rayleigh [2, Art. 272] for reflection of sound waves from a corrugated surface.
Sommario Un treno d'onde piane viaggia in un mezzo elastico semi-indefinito limitato da una linea corrugata di forma sinusoidale. Quando l'onda primaria urta contro la frontiera, si genera un nuovo treno d'onde, e si pone la questione di determinare l'effetto della rugosità del contorno sulla forma e l'ampiezza delle onde rillesse.Il caso di incidenza perpendicolare si può trattare senza difficoltà estendendo una soluzione trovata da Rayleigh [2, Art. 272] sulla riflessione delle onde sonore da parte di una superficie corrugata.
  相似文献   

7.
This paper derives the analytical solutions for a stretched string subjected to a concentrated mass moving at a constant velocity. From the derived analytical solutions of the contact force between the string and the mass, the displacement responses of the string can be easily obtained. The solutions cover an infinite, semi-infinite or finite string subjected to a moving mass at subsonic, sonic or supersonic velocities. For the semi-infinite or finite strings, the solutions for different types of boundary conditions are presented in both a unified form and in the form of a series of exponential and polynomial functions. The formula derived is shown to be correct by comparison with the semi-analytical method.  相似文献   

8.
The paper deals with 3D dynamic response of an elastic half-space loaded by a point force moving at a constant speed along a straight line on the surface. The problem is formulated within the framework of the asymptotic hyperbolic–elliptic model developed earlier by two of the authors. The validity of the model is restricted to the range of speeds close to the Rayleigh wave speed. Steady-state near-field solutions are derived in terms of elementary functions. Transient analysis of surface motion illustrates peculiarities of the resonance associated with the Rayleigh wave.  相似文献   

9.
An iterative boundary element method, which was originally developed for both two‐ and three‐dimensional cavitating hydrofoils moving steadily under a free surface, is modified and extended to predict the wave pattern and wave resistance of surface piercing bodies, such as ship hulls and vertical struts. The iterative nonlinear method, which is based on the Green theorem, allows the separation of the surface piercing body problem and the free‐surface problem. The free‐surface problem is also separated into two parts; namely, left and right (with respect to x axis) free‐surface problems. Those all (three) problems are solved separately, with the effects of one on the other being accounted for in an iterative manner. The wetted surface of the body (ship hull or strut, including cavity surface if exists) and the left and right parts with respect to x axis of free surface are modelled with constant strength dipole and constant strength source panels. In order to prevent upstream waves, the source strengths from some distance in front of the body to the end of the truncated upstream boundary are enforced to be zero. No radiation condition is enforced for downstream and transverse boundaries. A transverse wave cut technique is used for the calculation of wave resistance. The method is first applied to a point source and a three‐dimensional submerged cavitating hydrofoil to validate the method and a Wigley hull and a vertical strut to compare the results with those of experiments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
An effective numerical technique is presented to model turbulent motion of a standing surface wave in a tank. The equations of motion for turbulent boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM–finite difference technique is used to model the wave motion and the corresponding boundary layer flow. A mixing‐length theory is used for turbulence modelling. The model results are in good agreement with previous physical and numerical experiments. Although the technique is presented for a standing surface wave, it can be easily applied to other free surface problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The propagation phenomenon of a detonation wave is particularly interesting, because the detonation wave is composed of a 3D shock wave system accompanied by a reaction front. Thus, the passage of a detonation wave draws cellular patterns on a soot-covered plate. The pressure and temperature behind the detonation wave are extremely high and may cause serious damages around the wave. Therefore, it is of great significance from a safety-engineering point of view to decay the detonation wave with a short distance from the origin. In the present study, experiments using high-speed schlieren photography are conducted in order to investigate the behaviors of the detonation wave diffracting from two slits. The detonation wave produced in a stoichiometric mixture of hydrogen and oxygen is propagated through the slits, and the behaviors behind the slit-plate are investigated experimentally. When a detonation wave diffracts from the slits, a shock wave is decoupled with a reaction front. Since the two shock waves propagate from the slits interact with each other at the center behind the plate, the detonation wave is reinitiated by generating a hot-spot sufficient to cause local explosions. Furthermore, it is clarified that the shock wave reflected from a tube-wall is also capable of reinitiating the detonation wave. The reinitiation distance of the detonation wave from the slit-plate is correlated using a number of cells emerged from each slit.   相似文献   

12.
Based on the study on the Mach reflection of a solitary wave in [3], we continue to investigate effects of the boundary layers on the bottom and the vertical side wall. By using matched asymptotic methods, the two-dimensional KdV equation is modified to account for effects of viscosity. Numerical can be neglected. The results including the side wall's effects agree satisfactorily with those of Melville's experiments. Finally, we establish the simplified concept of the side wall effect and conclude that it represents the physical reason for the discrepancy between the experiments and the previous calculations based on the inviscid fluid flow theory.  相似文献   

13.
近场波动模拟的一种应力人工边界   总被引:28,自引:1,他引:28  
采用平面波和远场散射波混合透射,引入无限介质线弹性本构关系建立了一种应力人工 边界条件. 其优点在于边界结点反应与内部有限元结点反应采用相同的积分格式计算,有限 元积分方法稳定时不存在人工边界失稳问题. 数值算例表明:边界精度高于现有黏性边 界、黏弹性人工边界,以及一、二阶透射人工边界.  相似文献   

14.
In this paper computational results for two different types of shock wave / turbulent boundary layer interaction flows are presented. It is shown that upstream effects of the shock induced separation cannot be reproduced by Wilcox's (1991) k--model, whereas downstream of the interaction, predictions of pressure distribution and skin friction are acceptable. The inclusion of the compressible part of the dissipation rate and the pressure dilatation in the model has noticeable, but not dramatic effects on wall pressure and skin friction in the selected flow cases.  相似文献   

15.
By using the method of dynamical systems, the travelling wave solutions of for an integrable nonlinear evolution equation is studied. Exact explicit parametric representations of kink and anti-kink wave, periodic wave solutions and uncountably infinite many smooth solitary wave solutions are given.  相似文献   

16.
The finite element method is developed to solve the problem of wave run-up on a mild, plane slope. A novel approach to implementing a deforming mesh of one-dimensional, three-node, isoparametric elements is described and demonstrated. The discrete time interval (DTI), arbitrary Lagrangian–Eulerian (ALE) and space–time element (STE) methods are used to solve the unsteady one-dimensional shallow water wave equations. The boundary condition required is simply the seaward water surface elevation, and although the method has only been tested for monochromatic waves, it should be equally valid for any sea state which can be described as a water surface elevation as a function of time. All three solution methods are shown to given good results. Time histories of the terms of the governing equations are calculated and used to demonstrate how the ALE and STE methods account for mesh deformation. The model could be extended to two dimensions, which would have practical application to the run-up of obliquely incident waves. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Summary By use of the separation of variables method and the Laplace transformation, the two-dimensional transient torsional wave propagation problem in a transversely isotropic tube is studied when a torque is suddenly applied to its end surface. The results show that, for the discontinuous distribution of the impact shear stress, the region of the 2D stress distribution in a transversely isotropic tube becomes large with the increase of the anisotropy of the material. Received 13 June 1997; accepted for publication 17 June 1998  相似文献   

18.
Travelling wave solutions for a second order wave equation of KdV type   总被引:1,自引:0,他引:1  
The theory of planar dynamical systems is used to study the dynamical behaviours of travelling wave solutions of a nonlinear wave equations of KdV type.In different regions of the parametric space,sufficient conditions to guarantee the existence of solitary wave solutions,periodic wave solutions,kink and anti-kink wave solutions are given.All possible exact explicit parametric representations are obtained for these waves.  相似文献   

19.
In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号