首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
More than a quarter of a century after the first metal template synthesis of a [2]catenane in Strasbourg, there now exists a plethora of strategies available for the construction of mechanically bonded and entwined molecular level structures. Catenanes, rotaxanes, knots and Borromean rings have all been successfully accessed by methods in which metal ions play a pivotal role. Originally metal ions were used solely for their coordination chemistry; acting either to gather and position the building blocks such that subsequent reactions generated the interlocked products or by being an integral part of the rings or "stoppers" of the interlocked assembly. Recently the role of the metal has evolved to encompass catalysis: the metal ions not only organize the building blocks in an entwined or threaded arrangement but also actively promote the reaction that covalently captures the interlocked structure. This Review outlines the diverse strategies that currently exist for forming mechanically bonded molecular structures with metal ions and details the tactics that the chemist can utilize for creating cross-over points, maximizing the yield of interlocked over non-interlocked products, and the reactions-of-choice for the covalent capture of threaded and entwined intermediates.  相似文献   

2.
We report on a heterocircuit [2]catenane in which a reversible half-rotation of one ring about the other can be induced, and locked in place, by switching the coordination of the interlocked rings between Pd(II) and Co(III).  相似文献   

3.
Using scanning tunneling microscopy (STM), electrospray ionization mass spectrometry (ESI-MS), and X-ray photoelectron spectroscopy (XPS), we demonstrate that a free [2]catenane consisting of two interlocking 30-membered rings (cat-30) can be deposited on a Ag(111) surface by vacuum sublimation without decomposition. The deposited cat-30 molecules self-organize as ordered dimer chain structures at the surface, presumably via intermolecular pi-pi stacking. An in situ addition of Cu atoms to the surface-adsorbed catenanes induces a drastic change in the molecular organization, i.e., from the dimer chain structure to isolated species. The nitrogen core level spectra suggest that the cat-30 phenanthroline units coordinate with Cu, indicating that the free catenane has been transformed into a Cu-complexed [2]catenane. Since it is known that the two interlocked macrocyclic rings of the free ligand cat-30 completely rearrange, i.e., circumrotate, upon complexation to copper, our results reveal that when adsorbed on the silver surface, the two macrocyclic rings of the free [2]catenane can glide within one another so as to generate the corresponding copper complex by in situ Cu complexation.  相似文献   

4.
Herein, we present a new synthetic approach to achieve selective supramolecular transformations and construct different interlocked metallacycles featuring a π‐electron‐deficient thiazolo[5,4‐d]thiazole‐derived ligand. We demonstrate that the formation of mono‐rings, interlocked rings ([2]catenanes) and Borromean rings can be controlled by adjusting the length of the binuclear half‐sandwich RhIII and IrIII building blocks. Furthermore, a concentration effect or D‐A stacking interaction between the pyrene guest and the thiazolo[5,4‐d]thiazole‐based ligand promotes a unique and reversible conversion between catenane structures and metalla‐rectangles. The synthetic results are supported by single‐crystal X‐ray diffraction analysis.  相似文献   

5.
We report the convenient synthesis of a pyrrole-functionalized tetracationic cyclophane, [2]rotaxane, and [2]catenane. X-ray crystallography has confirmed the interlocked structure of the catenane. We have investigated the solution properties of these systems using solution electrochemistry, NMR, and UV-vis spectroscopy. We have also demonstrated that it is possible to immobilize these systems onto a platinum working electrode surface. We have shown that films of the cyclophane have the ability to undergo complexation with a dialkyloxynaphthalene derivative.  相似文献   

6.
This tutorial review describes the evolution of the field of chemical templation, in particular, emphasising the impact its application has made to the synthesis of mechanically interlocked structures. Recent advances in the use of negatively charged template species for the synthesis of interlocked structures are detailed, with the main focus of this review describing the development of a general anion templation strategy that combines anion recognition with ion-pairing. The versatility of this methodology is demonstrated by the chloride anion templated synthesis of a series of interpenetrated pseudorotaxane, rotaxane and catenane structures. Upon template removal, the mechanically interlocked rotaxanes and catenanes are shown to bind anions within their topologically unique anion binding clefts by virtue of electrostatic and hydrogen bonding interactions, exhibiting a strong selectivity for the chloride halide anion template. The incorporation of the photo-active rhenium(I) bipyridyl signalling group into the rotaxane structural framework highlights the potential of these interlocked systems in future chemical sensor design.  相似文献   

7.
The synthesis, structure and anion‐recognition properties of a new strapped‐porphyrin‐containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor–acceptor and coordinative pyridine–zinc interactions. The [2]catenane incorporates a three‐dimensional, hydrogen‐bond‐donating anion‐binding pocket; solid‐state structural analysis of the catenane?chloride complex reveals that the chloride anion is encapsulated within the catenane’s interlocked binding cavity through six convergent CH????Cl and NH???Cl hydrogen‐bonding interactions and solution‐phase 1H NMR titration experiments demonstrate that this complementary hydrogen‐bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution.  相似文献   

8.
Reaction of the flexible dialkynyldigold(I) precursors X(4-C6H4OCH2C-CAu)2 with 1,4-bis(diphenylphosphino)butane gave complexes of formula [[[mu-X(4-C6H4OCH2CCAu)2[mu-(Ph2PCH2CH2CH2CH2PPh2)]]n]. The complexes exist as 25-membered ring compounds with n = 1 when X = O or S, as [2]catenanes with n = 2 when X = CH2 or CMe2, and as a unique doubly braided [2]catenane, containing interlocked 50-membered rings with n = 4 when X = cyclohexylidene. These compounds form easily and selectively by self-assembly; reasons for the selectivity are also discussed.  相似文献   

9.
[structure: see text] Post-assembly covalent modification using Wittig chemistry of [2]rotaxane ylides, wherein NH(2)(+) centers in the dumbbell-shaped components are recognized by dibenzo[24]crown-8 (DB24C8) rings, has afforded a [3]catenane and a [3]rotaxane with a precise and synthetically prescribed shortage of DB24C8 rings. The nondegenerate pairs of translational isomers present in both of these interlocked molecular compounds provide the fundamental platform on which to construct sensory devices and nanochemomechanical systems.  相似文献   

10.
A [2]catenane in which the macrocyclic polyether, bisparaphenylene[34]crown-10, is interlocked with the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), is shown by dynamic (1)H NMR spectroscopy, using (i). neutral and (ii). anionic chiral shift reagents (CSRs), to exist at low temperatures (197 K) in acetone-d(6) solutions as 1:1 and 2:1 mixtures of diastereoisomeric complexes and salts, respectively, as a consequence of the helical chirality associated with the [2]catenane interacting with the CSRs.  相似文献   

11.
[reaction: see text]. Olefin metathesis has been employed in the efficient syntheses of a [2]catenane with the templation being provided by the recognition between a secondary ammonium ion and a crown ether. In one approach, a crown ether precursor has been clipped around an NH2+ center situated in a macrocyclic ring, yielding the mechanically interlocked compound. In the other approach, the reversible nature of olefin metathesis allows for a magic ring synthesis to occur wherein two free macrocycles can be employed as the stationary materials, leading to the formation of the same [2]catenane.  相似文献   

12.
The active metal template (AMT) strategy is a powerful tool for the formation of mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes, allowing the synthesis of a variety of MIMs, including π-conjugated and multicomponent macrocycles. Cycloparaphenylene (CPP) is an emerging molecule characterized by its cyclic π-conjugated structure and unique properties. Therefore, diverse modifications of CPPs are necessary for its wide application. However, most CPP modifications require early stage functionalization and the direct modification of CPPs is very limited. Herein, we report the synthesis of a catenane consisting of [9]CPP and a 2,2′-bipyridine macrocycle as a new CPP analogue that contains a reliable synthetic scaffold enabling diverse and concise post-modification. Following the AMT strategy, the [9]CPP-bipyridine catenane was successfully synthesized through Ni-mediated aryl-aryl coupling. Catalytic C−H borylation/cross-coupling and metal complexation of the bipyridine macrocycle moiety, an effective post-functionalization method, were also demonstrated with the [9]CPP-bipyridine catenane. Single-crystal X-ray structural analysis revealed that the [9]CPP-bipyridine catenane forms a tridentated complex with an Ag ion inside the CPP ring. This interaction significantly enhances the phosphorescence lifetime through improved intermolecular interactions.  相似文献   

13.
We report the synthesis of three donor–acceptor azido-functionalised catenanes, wherein the asymmetric positioning of the azide group on one or two of the ring components renders its resident macrocycle constitutionally asymmetric, and so it acts as an oriented ring. As a consequence, the analyses of (i) a monoazido[2]catenane, (ii) a monoazido[3]catenane and (iii) a bisazido[3]catenane, which exists as a mixture of two conditional topological isomers, are significantly complicated. Accordingly, characterisation of the catenanes, which was achieved by a combination of dynamic 1H NMR spectroscopy, mass spectrometry and single crystal X-ray diffraction, is an arduous task. We expect that the difficulties in analysing these mechanically interlocked molecules will be encountered more frequently as chemists prepare entities with increasingly complex topologies.  相似文献   

14.
Mechanically interlocked structures are fascinating synthetic targets and the topological complexity achieved through catenation offers numerous possibilities for the construction of new molecules with exciting properties. In the structural space of catenated organic cage molecules, only few examples have been realized so far, and control over the catenation process in solution is still barely achieved. Herein, we describe the formation of a quadruply interlocked catenane of giant chiral [8+12] salicylimine cubes. The formation could be controlled by the choice of solvent used in the reaction. The interlocked structure was unambiguously characterized by single crystal X-ray diffraction and weak hydrogen bonding was identified as a central driving force for the catenation. Furthermore, scrambling experiments using partially deuterated cages were performed, revealing that the catenane formation occurs through mechanical interlocking of preformed single cages.  相似文献   

15.
Interlocked DNA rings (catenanes) are interesting reconfigurable nanostructures. The synthesis of catenanes with more than two rings is, however, hampered, owing to low yields of these systems. We report a new method for the synthesis of catenanes with a controlled number of rings in satisfactory yields. Our approach is exemplified by the synthesis of a five‐ring DNA catenane that exists in four different configurations. By the use of nucleic acids as “fuels” and “antifuels”, the cyclic reconfiguration of the system across four states is demonstrated. One of the states, olympiadane, corresponds to the symbol of the Olympic Games. The five‐ring catenane was implemented as a mechanical scaffold for the reconfiguration of Au NPs. The advantages of DNA catenanes over supramolecular catenanes include the possibility of generating highly populated defined states and the feasibility of tethering nanoobjects to the catenanes, which act as a mechanical scaffold to reconfigure the nanoobjects.  相似文献   

16.
Herein, we report the biosynthesis of protein heterocatenanes using a programmed sequence of multiple post-translational processing events including intramolecular chain entanglement, in situ backbone cleavage, and spontaneous cyclization. The approach is general, autonomous, and can obviate the need for any additional enzymes. The catenane topology was convincingly proven using a combination of SDS-PAGE, LC-MS, size exclusion chromatography, controlled proteolytic digestion, and protein crystallography. The X-ray crystal structure clearly shows two mechanically interlocked protein rings with intact folded domains. It opens new avenues in the nascent field of protein-topology engineering.  相似文献   

17.
We report the remarkable ability of 2,6‐bis(1,2,3‐triazol‐4‐yl)pyridine ( btp ) compounds 2 with appended olefin amide arms to self‐template the formation of interlocked [2]catenane structures 3 in up to 50 % yield when subjected to olefin ring‐closing metathesis in CH2Cl2. X‐ray diffraction crystallography enabled the structural characterization of both the [2]catenane 3 a and the non‐interlocked macrocycle 4 a . These [2]catenanes showed selective triazolyl hydrogen‐bonding interactions with the tetrahedral phosphate anion when screened against a range of ions; 3 a , b are the first examples of selective [2]catenane hosts for phosphate.  相似文献   

18.
Herein, we report the biosynthesis of protein heterocatenanes using a programmed sequence of multiple post‐translational processing events including intramolecular chain entanglement, in situ backbone cleavage, and spontaneous cyclization. The approach is general, autonomous, and can obviate the need for any additional enzymes. The catenane topology was convincingly proven using a combination of SDS‐PAGE, LC‐MS, size exclusion chromatography, controlled proteolytic digestion, and protein crystallography. The X‐ray crystal structure clearly shows two mechanically interlocked protein rings with intact folded domains. It opens new avenues in the nascent field of protein‐topology engineering.  相似文献   

19.
The synthesis of topologically complex structures, such as links and knots, is one of the current challenges in supramolecular chemistry. The so‐called Solomon link consists of two doubly interlocked rings. Despite being a rather simple link from a topological point of view, only few molecular versions of this link have been described so far. Here, we report the quantitative synthesis of a giant molecular Solomon link from 30 subcomponents. The highly charged structure is formed by assembly of 12 cis‐blocked Pt2+ complexes, six Cu+ ions, and 12 rigid N‐donor ligands. Each of the two interlocked rings is composed of six repeating Pt(ligand) units, while the six Cu+ ions connect the two rings. With a molecular weight of nearly 12 kDa and a diameter of 44.2 Å, this complex is the largest non‐DNA‐based Solomon link described so far. Furthermore, it represents a molecular version of a “stick link”.  相似文献   

20.
We present the rational design and anion-binding properties of the first anion-templated pseudorotaxanes and catenanes in which the "wheel" component is provided by a calix[4]arene macrobicyclic unit. The designs and syntheses of two new calix[4]arene macrobicycles, 2 and 3, are presented, and the abilities of these new species both to bind anions and to undergo anion-dependent pseudorotaxane formation are demonstrated. Furthermore, it is shown that performing ring-closing metathesis reactions on some of these pseudorotaxane assemblies gives novel catenane species 14 and 15, in which the yield of interlocked molecule obtained is critically dependent on the presence of a suitable anion template, namely, chloride. Exchange of the chloride anion in catenane 14 a for hexafluorophosphate gives catenane 14 d, which contains a unique anion-binding domain defined by the permanently interlocked hydrogen-bond-donating calix[4]arene macrobicycle and pyridinium macrocycle fragments. The anion-binding properties of this domain are presented, and shown to differ from non-interlocked components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号