首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A range of frustrated Lewis pairs (FLPs) containing borenium cations have been synthesised. The catechol (Cat)‐ligated borenium cation [CatB(PtBu3)]+ has a lower hydride‐ion affinity (HIA) than B(C6F5)3. This resulted in H2 activation being energetically unfavourable in a FLP with the strong base PtBu3. However, ligand disproportionation of CatBH(PtBu3) at 100 °C enabled trapping of H2 activation products. DFT calculations at the M06‐2X/6‐311G(d,p)/PCM (CH2Cl2) level revealed that replacing catechol with chlorides significantly increases the chloride‐ion affinity (CIA) and HIA. Dichloro–borenium cations, [Cl2B(amine)]+, were calculated to have considerably greater HIA than B(C6F5)3. Control reactions confirmed that the HIA calculations can be used to successfully predict hydride‐transfer reactivity between borenium cations and neutral boranes. The borenium cations [Y(Cl)B(2,6‐lutidine)]+ (Y=Cl or Ph) form FLPs with P(mesityl)3 that undergo slow deprotonation of an ortho‐methyl of lutidine at 20 °C to form the four‐membered boracycles [(CH2{NC5H3Me})B(Cl)Y] and [HPMes3]+. When equimolar [Y(Cl)B(2,6‐lutidine)]+/P(mesityl)3 was heated under H2 (4 atm), heterolytic cleavage of dihydrogen was competitive with boracycle formation.  相似文献   

2.
Syntheses and Crystal Structures of tBu‐substituted Disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = OH, Br; X = OH, Y = H) and of the Adducts tBu3SiOH·(HO3SCF3)0.5·H2O and tBu3SiOLi·(LiO3SCF3)2·(H2O)2 The disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = H, OH) are accessible from the reaction of CF3SO2Cl with tBu2SiHOH or tBu2Si(OH)2. By this reaction the disiloxane tBu2SiH‐O‐SiHtBu2 is formed together with tBu2SiH‐O‐SiOHtBu2. The disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = Cl, Br) can be synthesized almost quantitatively from tBu2SiH‐O‐SiHtBu2 with Cl2 and Br2 in CH2Cl2. The structures of the disiloxanes tBu2SiX‐O‐SiYtBu2 (X = H, Y = OH; X = Y = OH, Br) show almost linear Si‐O‐Si units with short Si‐O bonds. Single crystals of the adducts tBu3SiOH·(HO3SCF3)0.5·H2O and tBu3SiOLi·(LiO3SCF3)2·(H2O)2 have been obtained from the reaction of tBu3SiOH with CF3SO3H and of tBu3SiO3SCF3 with LiOH. According to the result of the X‐ray structural analysis (hexagonal, P‐62c), tBu3SiOLi · (LiO3SCF3)2·(H2O)2 features the ion pair [(tBu3SiOLi)2(LiO3SCF3)3(H2O)3Li]+ [CF3SO3]?. The central framework of the cation forms a trigonal Li6 prism.  相似文献   

3.
tBu2P–PLi–PtBu2·2THF reacts with [cis‐(Et3P)2MCl2] (M = Ni, Pd) yielding [(1,2‐η‐tBu2P=P–PtBu2)Ni(PEt3)Cl] and [(1,2‐η‐tBu2P=P–PtBu2)Pd(PEt3)Cl], respectively. tBu2P– PLi–PtBu2 undergoes an oxidation process and the tBu2P–P–PtBu2 ligand adopts in the products the structure of a side‐on bonded 1,1‐di‐tert‐butyl‐2‐(di‐tert‐butylphosphino)diphosphenium cation with a short P–P bond. Surprisingly, the reaction of tBu2P–PLi–PtBu2·2THF with [cis‐(Et3P)2PtCl2] does not yield [(1,2‐η‐tBu2P=P–PtBu2)Pt(PEt3)Cl].  相似文献   

4.
The half‐open rare‐earth‐metal aluminabenzene complexes [(1‐Me‐3,5‐tBu2‐C5H3Al)(μ‐Me)Ln(2,4‐dtbp)] (Ln=Y, Lu) are accessible via a salt metathesis reaction employing Ln(AlMe4)3 and K(2,4‐dtbp). Treatment of the yttrium complex with B(C6F5)3 and tBuCCH gives access to the pentafluorophenylalane complex [{1‐(C6F5)‐3,5‐tBu2‐C5H3Al}{μ‐C6F5}Y{2,4‐dtbp}] and the mixed vinyl acetylide complex [(2,4‐dtbp)Y(μ‐η13‐2,4‐tBu2‐C5H4)(μ‐CCtBu)AlMe2], respectively.  相似文献   

5.
Synthesis, Spectroscopic Characterization, and Molecular Structures of Selected Lewis‐Base Adducts of the Alkali Metal Tri(tert‐butyl)silylphosphanides The metalation of tri(tert‐butyl)silylphosphane with butyllithium and the bis(trimethylsilyl)amides of sodium, potassium, and rubidium yields quantitatively the corresponding alkali metal tri(tert‐butyl)silylphosphanides, which crystallize after addition of appropriate Lewis‐bases as dimeric (DME)LiP(H)SitBu3 ( 1 ), chain‐like (DME)NaP(H)SitBu3 ( 2 ), monomeric ([18]Krone‐6)KP(H)SitBu3 ( 3 ), and dimeric (TMEDA)1.5RbP(H)SitBu3 ( 4 ). The reaction of H2PSitBu3 with cesium bis(trimethylsilyl)amide at room temperature gives monocyclic and tetrameric cesium tri(tert‐butyl)silylphosphanide ( 5 ) with two additional coordinated CsN(SiMe3)2 molecules. At 80 °C this complex reacts with excess of phosphane to the tetrameric toluene adduct (η6‐Toluol)CsP(H)SitBu3 ( 6 ) which contains a central Cs4P4‐heterocubane fragment. The constitution of these compounds was verified by X‐ray structure determinations.  相似文献   

6.
1,3,6,8‐Tetra‐tert‐butylcarbazol‐9‐yl and 1,8‐diaryl‐3,6‐di(tert‐butyl)carbazol‐9‐yl ligands have been utilized in the synthesis of potassium and magnesium complexes. The potassium complexes (1,3,6,8‐tBu4carb)K(THF)4 ( 1 ; carb=C12H4N), [(1,8‐Xyl2‐3,6‐tBu2carb)K(THF)]2 ( 2 ; Xyl=3,5‐Me2C6H3) and (1,8‐Mes2‐3,6‐tBu2carb)K(THF)2 ( 3 ; Mes=2,4,6‐Me3C6H2) were reacted with MgI2 to give the Hauser bases 1,3,6,8‐tBu4carbMgI(THF)2 ( 4 ) and 1,8‐Ar2‐3,6‐tBu2carbMgI(THF) (Ar=Xyl 5 , Ar=Mes 6 ). Structural investigations of the potassium and magnesium derivatives highlight significant differences in the coordination motifs, which depend on the nature of the 1‐ and 8‐substituents: 1,8‐di(tert‐butyl)‐substituted ligands gave π‐type compounds ( 1 and 4 ), in which the carbazolyl ligand acts as a multi‐hapto donor, with the metal cations positioned below the coordination plane in a half‐sandwich conformation, whereas the use of 1,8‐diaryl substituted ligands gave σ‐type complexes ( 2 and 6 ). Space‐filling diagrams and percent buried volume calculations indicated that aryl‐substituted carbazolyl ligands offer a steric cleft better suited to stabilization of low‐coordinate magnesium complexes.  相似文献   

7.
Oxidation of zero‐valent phosphine complexes [M(PtBu3)2] (M=Pd, Pt) has been investigated in 1,2‐difluorobenzene solution using cyclic voltammetry and subsequently using the ferrocenium cation as a chemical redox agent. In the case of palladium, a mononuclear paramagnetic PdI derivative was readily isolated from solution and fully characterized (EPR, X‐ray crystallography). While in situ electrochemical measurements are consistent with initial one‐electron oxidation, the heavier congener undergoes C?H bond cyclometalation and ultimately affords the 14 valence‐electron PtII complex [Pt(κ2PC‐PtBu2CMe2CH2)(PtBu3)]+ with concomitant formation of [Pt(PtBu3)2H]+.  相似文献   

8.
Reactions of carbon monoxide (CO) with tBu2MeSiLi and (E)‐(tBu2MeSi)(tBuMe2Si)C=Si(SiMetBu2)Li?2 THF ( 4 ) were studied both experimentally and computationally. Reaction of tBu2MeSiLi with CO in hexane yields the first stable tetra‐silyl di‐ketyl biradical [(tBu2MeSi)2COLi].2 ( 3 ). Reaction of 4 with CO yields selectively and quantitatively the first reported 1‐silaallenolate, (tBu2MeSi)(tBuMe2Si)C=C=Si(SiMetBu2)OLi?THF ( 5 ). Both 3 and 5 were characterized by X‐ray crystallography and biradical 3 also by EPR spectroscopy. Silaallenolate 5 reacts with Me3SiCl to produce siloxy substituted 1‐silaallene (tBu2MeSi)(tBuMe2Si)C=C=Si(SiMetBu2)OSiMe3. The reaction of 4 with CO provides a new route to 1‐silaallenes. The mechanisms of the reactions of tBuMe2SiLi and of 4 with CO were studied by DFT calculations.  相似文献   

9.
Oxidation of zero‐valent phosphine complexes [M(PtBu3)2] (M=Pd, Pt) has been investigated in 1,2‐difluorobenzene solution using cyclic voltammetry and subsequently using the ferrocenium cation as a chemical redox agent. In the case of palladium, a mononuclear paramagnetic PdI derivative was readily isolated from solution and fully characterized (EPR, X‐ray crystallography). While in situ electrochemical measurements are consistent with initial one‐electron oxidation, the heavier congener undergoes C−H bond cyclometalation and ultimately affords the 14 valence‐electron PtII complex [Pt(κ2PC‐PtBu2CMe2CH2)(PtBu3)]+ with concomitant formation of [Pt(PtBu3)2H]+.  相似文献   

10.
Syntheses and Properties of Di‐tert‐butylphosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 The phosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 are accessible from reaction of LiPtBu2 with ZnI2, HgCl2 and CuCl, respectively. [M(PtBu2)2]2 (M = Zn, Hg) are dimers in the solid state. X‐ray structural analyses of these phosphides reveal that [M(PtBu2)2]2 (M = Zn, Hg) contain four‐membered M2P2‐rings whereas [Cu(PtBu2)]4 features a planar eight‐membered Cu4P4‐ring. Degradation reaction of LiPtBu2(BH3) in the presence of HgCl2 results in the dimeric phosphanylborane BH3 adduct [tBu2PBH2(BH3)]2. X‐ray quality crystals of [tBu2PBH2(BH3)]2 (monoclinic, P21/n) are obtained from a pentane solution at 6 °C. According to the result of the X‐ray structural analysis, the O2‐oxidation product of [Hg(PtBu2)2]2, [Hg{OP(O)(tBu)OPtBu2}(μ‐OPtBu)]2, features in the solid state structure two five‐membered HgP2O2‐rings and a six‐membered Hg2P2O2‐ring. Herein the spiro‐connected Hg atoms are member of one five‐membered and of the six‐membered ring.  相似文献   

11.
The NHC–borane adduct (IBn)BH3 ( 1 ) (NHC= N‐heterocyclic carbene; IBn=1,3‐dibenzylimidazol‐2ylidene) reacts with [Ph3C][B(C6F5)4] through sequential hydride abstraction and dehydrogenative cationic borylation(s) to give singly or doubly ring closed NHC–borenium salts 2 and 3 . The planar doubly ring closed product [C3H2(NCH2C6H4)2B][B(C6F5)4] is resistant to quaternization at boron by Et2O coordination, but forms classical Lewis acid–base adducts with the stronger donors Ph3P, Et3PO, or 1,4‐diazabicyclo[2.2.2]octane (DABCO). Treatment of 3 with tBu3P selectively yields the unusual oligomeric borenium salt trans‐[(C3H2(NCH2C6H4)2B)2(C3H2(NCHC6H4)2B)][B(C6F5)4] ( 7 ).  相似文献   

12.
We investigate the transition‐state (TS) region of the potential energy surface (PES) of the reaction tBu3P+H2+B(C6F5)3tBu3P‐H(+)+(?)H?B(C6F5)3 and the dynamics of the TS passage at room temperature. Owing to the conformational inertia of the phosphane???borane pocket involving heavy tBu3P and B(C6F5)3 species and features of the PES E(P???H, B???H | B???P) as a function of P???H, B???H, and B???P distances, a typical reactive scenario for this reaction is a trajectory that is trapped in the TS region for a period of time (about 350 fs on average across all calculated trajectories) in a quasi‐bound state (scattering resonance). The relationship between the timescale of the TS passage and the effective conformational inertia of the phosphane???borane pocket leads to a prediction that isotopically heavier Lewis base/Lewis acid pairs and normal counterparts could give measurably different reaction rates. Herein, the predicted quasi‐bound state could be verified in molecular collision experiments involving femtosecond spectroscopy.  相似文献   

13.
The zirconocene complex [{(C6F5)2B‐(CH2)3‐Cp}(Cp‐PtBu2)ZrCl2] ( 6 ; Cp=cyclo‐C5H4) was prepared by hydroboration of [(allyl‐Cp)(Cp‐PtBu2)ZrCl2] ( 5 ) with HB(C6F5)2 (“Piers’ borane”). It represents a frustrated Lewis pair (FLP) in which both the Lewis acid and the Lewis base were attached at the metallocene framework. Its reaction with 1‐pentyne did not result in the 1,2‐addition of or deprotonation reaction by the FLP, but rather in the 1,1‐carboboration of the triple bond, thereby obtaining a Z/E mixture (1.2:1) of the respective organometallic substituted alkenes 7 . The analogous reaction of 1‐pentyne with the phosphorous‐free system [{(C6F5)2B‐(CH2)3‐Cp)}CpZrCl2] ( 9 ) gave the respective 1,1‐carboboration products ( Z‐10 / E‐10 ≈1.3:1).  相似文献   

14.
An in depth study of the reactivity of an N‐heterocyclic carbene (NHC)‐stabilized silylene monohydride with alkynes is reported. The reaction of silylene monohydride 1 , tBu3Si(H)Si←NHC, with diphenylacetylene afforded silole 2 , tBu3Si(H)Si(C4Ph4). The density functional theory (DFT) calculations for the reaction mechanism of the [2+2+1] cycloaddition revealed that the NHC played a major part stabilizing zwitterionic transition states and intermediates to assist the cyclization pathway. A significantly different outcome was observed, when silylene monohydride 1 was treated with phenylacetylene, which gave rise to supersilyl substituted 1‐alkenyl‐1‐alkynylsilane 3 , tBu3Si(H)Si(CH?CHPh)(C?CPh). Mechanistic investigations using an isotope labelling technique and DFT calculations suggest that this reaction occurs through a similar zwitterionic intermediate and subsequent hydrogen abstraction from a second molecule of phenylacetylene.  相似文献   

15.
The single‐crystal X‐ray structure analysis of hexakis(2,4,6‐triisopropylphenyl)cyclotristannoxane, cyclo‐[(2,4,6‐i‐Pr3‐C6H2)2SnO]3 ( 1 ), is reported and reveals this compound to contain an almost planar six‐membered ring. Redistribution reactions of 1 with cyclo‐(t‐Bu2SnO)3 and t‐Bu2SiCl2, respectively, failed and indicate an unusual kinetic inertness of the Sn–O bonds in 1 as compared to related molecular diorganotin oxides containing less bulkier substituents. The redistribution reaction of cyclo‐(t‐Bu2SnO)3 with cyclo‐(t‐Bu2SnS)2 leads to an equilibrium involving the trimeric diorganotin oxysulphides cyclot‐Bu2Sn(OSnt‐Bu2)2S ( 2 a ) and cyclot‐Bu2Sn(SSnt‐Bu2)2O ( 2 b ).  相似文献   

16.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

17.
The Sodium Silanide t Bu2PhSiNa: Synthesis, Properties, Structure Analysis – a Synthetic Pathway to Introduce the t Bu2PhSi‐Ligand The sodium silanide tBu2PhSiNa is easily obtained by the reaction of sodium metal with tBu2PhSiBr at elevated temperatures in n‐heptane, THF or dibutylether. An X‐ray crystal structure analysis reveals, that the sodium silanide 3 contains chains of tBu2PhSiNa units with η6 sodium–phenyl‐contacts. Oxidation of tBu2PhSiNa with TCNE proceeds with formation of the disilane tBu2PhSi–SiPhtBu2.  相似文献   

18.
The title compound, [2,6‐bis(di‐tert‐butylphosphino)phenyl‐1κ3P,C1,P′]di‐μ‐chlorido‐1:2κ4Cl:Cl‐(2η4‐cycloocta‐2,5‐diene)hydrido‐1κH‐diiridium(I,III) hexane hemisolvate, [Ir2(C8H12)(C24H43P2)Cl2H]·0.5C6H14 or [(tBuPCP)IrH(μ2‐Cl)2Ir(COD)][tBuPCP is κ3‐2,6‐(tBu2PCH2)2C6H3 and COD is η4‐2,5‐cyclooctadiene], is an IrIII/IrI dimer bridged by two chloride ions. The Ir2Cl2 framework is nearly planar, with a dihedral angle of 13.04 (4)° between the two Ir centers. The compound was isolated as a hexane hemisolvate. A list of distances found in Ir(PCP) compounds is given.  相似文献   

19.
tBu2P‐P=P(Me)tBu2 reacts with [Fe2(CO)9] to give [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)3}{Fe(CO)4}] ( 1 ) and [trans‐(tBu2MeP)2Fe(CO)3]( 2 ). With [(η2‐C8H14)2Fe(CO)3] in addition to [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)2PMetBu2}‐{Fe(CO)4}] ( 10 ) and 2 also [(μ‐PtBu2){μ‐P‐Fe(CO)3‐PMetBu2}‐{Fe(CO)3}2(Fe‐Fe)]( 9 ) is formed. 1 crystallizes in the monoclinic space group P21/c with a = 875.0(2), b = 1073.2(2), c = 3162.6(6) pm and β = 94.64(3)?. 2 crystallizes in the monoclinic space group P21/c with a = 1643.4(7), b = 1240.29(6), c = 2667.0(5) pm and β = 97.42(2)?. 9 crystallizes in the monoclinic space group P21/n with a = 1407.5(5), b = 1649.7(5), c = 1557.9(16) pm and β = 112.87(2)?.  相似文献   

20.
Gold(I) complexes of 1‐[1‐(2,6‐dimethylphenylimino)alkyl]‐3‐(mesityl)imidazol‐2‐ylidene (C^ImineR), 1,3‐dimesitylimidazol‐2‐ylidene (IMes) and of the corresponding thione derivatives (S^ImineR and IMesS) were prepared and structurally characterised. The solid‐state structure of the C^ImineR and S^ImineR gold(I) complexes showed monodentate coordination of the ligand and a dangling imine group that could bind reversibly to the metal centre to stabilise otherwise unstable catalytic intermediates. Interestingly, reaction of C^IminetBu with [AuCl(SMe2)] led to the formation of [(C^IminetBu)AuCl], which rearranges upon crystallisation into the unusual complex cation [(C^IminetBu)2Au]+, with AuCl2? as the counterion. The activity of the gold complexes in the hydroamination of phenylacetylene with substituted anilines was tested and compared to control catalyst systems. The best catalytic performance was obtained with [(C^IminetBu)AuCl], with the exclusive formation of the Markovnikov addition product in excellent yield (>95 %) regardless of the substituents on aniline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号