首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Disulfide bond‐containing peptides are useful molecular scaffolds with diagnostic and therapeutic applications due to their good biological activity and good target selectivity, but their utility is sometimes limited by the lability of the disulfide moiety under reducing conditions and in the presence of disulfide bond isomerase. The development of disulfide surrogates with improved redox stability has been an area of ongoing research; and one possible strategy is based on a diaminodiacid (DADA) moiety, which can be used to synthesize the disulfide bond replacement peptides with precise structures and enhanced stability through automated solid‐phase peptide synthesis (SPPS). This review summarizes recent developments in the DADA‐based SPPS of peptide disulfide surrogates. Some representative applications and structural studies on the DADA‐based disulfide surrogates are described.  相似文献   

2.
The use of synthetic bridges as surrogates for disulfide bonds has emerged as a practical strategy to obviate the poor stability of some disulfide‐containing peptides. However, peptides incorporating large‐span synthetic bridges are still beyond the reach of existing methods. Herein, we report a native chemical ligation (NCL)‐assisted diaminodiacid (DADA) strategy that enables the robust generation of disulfide surrogate peptides incorporating surrogate bridges up to 50 amino acids in length. This strategy provides access to some highly desirable but otherwise impossible‐to‐obtain disulfide surrogates of bioactive peptide. The bioactivities and structures of the synthetic disulfide surrogates were verified by voltage clamp assays, NMR, and X‐ray crystallography; and stability studies established that the disulfide replacements effectively overcame the problems of disulfide reduction and scrambling that often plague these pharmacologically important peptides.  相似文献   

3.
Antimicrobial peptides and proteins represent an important class of plant defensive compounds against pathogens and provide a rich source of lead compounds in the field of drug discovery. We describe the effective preparation of the cysteine‐rich snakin‐1 and ‐2 antimicrobial peptides by using a combination of solid‐phase synthesis and native chemical ligation. A subsequent cysteine/cystine mediated oxidative folding to form the six internal disulfide bonds concurrently gave the folded proteins in 40–50 % yield. By comparative evaluation of mass spectrometry, HPLC, biological data and trypsin digest mapping of folded synthetic snakin‐2 compared to natural snakin‐2, we demonstrated that synthetic snakin‐2 possesses full antifungal activity and displayed similar chromatographic behaviour to natural snakin‐2. Trypsin digest analysis allowed tentative assignment of three of the purported six disulfide bonds.  相似文献   

4.
Chemical synthesis of insulin superfamily proteins (ISPs) has recently been widely studied to develop next-generation drugs. Separate synthesis of multiple peptide fragments and tedious chain-to-chain folding are usually encountered in these studies, limiting accessibility to ISP derivatives. Here we report the finding that insulin superfamily proteins (e.g. H2 relaxin, insulin itself, and H3 relaxin) incorporating a pre-made diaminodiacid bridge at A-B chain terminal disulfide can be easily and rapidly synthesized by a single-shot automated solid-phase synthesis and expedient one-step folding. Our new H2 relaxin analogues exhibit almost identical structures and activities when compared to their natural counterparts. This new synthetic strategy will expediate production of new ISP analogues for pharmaceutical studies.  相似文献   

5.
《中国化学快报》2021,32(12):4049-4052
The replacement of the disulfide bridge of CPI-1, a peptide inhibitor of light chain of Botulinum toxin serotype A, with the thioether-containing and biscarba-containing diaminodiacid bridge leads to a significant decrease in the degradation by trypsin and increase in the detoxification activity in vivo, the addition of hydrophobic or positive amino acid at C-terminus of modified peptides further improves the inhibitory activity.  相似文献   

6.
In mature collagen type III the homotrimer is C-terminally cross-linked by an interchain cystine knot consisting of three disulfide bridges of unknown connectivity. This cystine knot with two adjacent cysteine residues on each of the three alpha chains has recently been used for the synthesis and expression of model homotrimers. To investigate the origin of correct interchain cysteine pairings, (Pro-Hyp-Gly)(n) peptides of increasing triplet number and containing the biscysteinyl sequence C- and N-terminally were synthesised. The possibilities were that this origin may be thermodynamically coupled to the formation of the collagen triple helix as happens in the oxidative folding of proteins, or it could represent a post-folding event. Only with five triplets, which is known to represent the minimum number for self-association of collagenous peptides into a triple helix, air-oxidation produces the homotrimer in good yields (70 %), the rest being intrachain oxidised monomers. Increasing the number of triplets has no effect on yield suggesting the formation of kinetically trapped intermediates, which are not reshuffled by the glutathione redox buffer. N-terminal incorporation of the cystine knot is significantly less efficient in the homotrimerisation step and also in terms of triple-helix stabilisation. Compared to an artificial C-terminal cystine knot consisting of two interchain disulfide bridges, the collagen type III cystine knot produces collagenous homotrimers of remarkably high thermostability, although the concentration-independent refolding rates are not affected by the type of disulfide bridging. Since the natural cystine knot allows ready access to homotrimeric collagenous peptides of significantly enhanced triple-helix thermostability it may well represent a promising approach for the preparation of collagen-like innovative biomaterials. Conversely, the more laborious regioselectively formed artificial cystine knot still represents the only synthetic strategy for heterotrimeric collagenous peptides.  相似文献   

7.
The use of synthetic bridges as surrogates for disulfide bonds has emerged as a practical strategy to obviate the poor stability of some disulfide-containing peptides. However, peptides incorporating large-span synthetic bridges are still beyond the reach of existing methods. Herein, we report a native chemical ligation (NCL)-assisted diaminodiacid (DADA) strategy that enables the robust generation of disulfide surrogate peptides incorporating surrogate bridges up to 50 amino acids in length. This strategy provides access to some highly desirable but otherwise impossible-to-obtain disulfide surrogates of bioactive peptide. The bioactivities and structures of the synthetic disulfide surrogates were verified by voltage clamp assays, NMR, and X-ray crystallography; and stability studies established that the disulfide replacements effectively overcame the problems of disulfide reduction and scrambling that often plague these pharmacologically important peptides.  相似文献   

8.
Cyclic disulfide‐rich peptides have exceptional stability and are promising frameworks for drug design. We were interested in obtaining X‐ray structures of these peptides to assist in drug design applications, but disulfide‐rich peptides can be notoriously difficult to crystallize. To overcome this limitation, we chemically synthesized the L ‐ and D ‐forms of three prototypic cyclic disulfide‐rich peptides: SFTI‐1 (14‐mer with one disulfide bond), cVc1.1 (22‐mer with two disulfide bonds), and kB1 (29‐mer with three disulfide bonds) for racemic crystallization studies. Facile crystal formation occurred from a racemic mixture of each peptide, giving structures solved at resolutions from 1.25 Å to 1.9 Å. Additionally, we obtained the quasi‐racemic structures of two mutants of kB1, [G6A]kB1, and [V25A]kB1, which were solved at a resolution of 1.25 Å and 2.3 Å, respectively. The racemic crystallography approach appears to have broad utility in the structural biology of cyclic peptides.  相似文献   

9.
Solid-phase incorporation of diaminodiacids is one of the most effective approaches for synthesis of peptide disulfide bond mimics. One of a limitation of current diaminodiacid toolbox is that only four-atom linkage mimics are available that may not fully meet the activity optimization requirement. In this work, we developed a new diaminodiacid that contains a five-atom thioether (C–C–S–C–C) bridge for the first time. With this diaminodiacid in hand, we successfully obtained oxytocin containing new disulfide bond mimic by solid phase peptide synthesis.  相似文献   

10.
Incorporation of disulfide bonds to stabilize protein and peptide structures is not always a successful strategy. To advance current knowledge on the contribution of disulfide bonds to beta-hairpin stability, a previously reported beta-hairpin-forming peptide was taken as a template to design a series of Cys-containing peptides. The conformational behavior of these peptides in their oxidized, disulfide-cyclized peptides, and reduced, linear peptides, was investigated on the basis of NMR parameters: NOEs, and 1H and 13C chemical shifts. We found that the effect of disulfide bonds on beta-hairpin stability depends on its location within the beta-hairpin structure, being very small or even destabilizing when connecting two hydrogen-bonded facing residues. When the disulfide bond is linking non-hydrogen-bonded facing residues, we estimated that its contribution to the free-energy change of beta-hairpin folding is approximately -1.0 kcal mol(-1). This value is larger than those reported for most beta-hairpin-stabilizing cross-strand side-chain-side-chain interactions, except for some aromatic-aromatic interactions, in particular the Trp-Trp one, and the cation-pi interaction between Trp and the non-natural methylated Arg/Lys. As disulfide bonds are frequently used to stabilize peptide conformations, our conclusions can be useful for peptide, peptidomimetic, and protein design, and may even extend to other chemical cross-links.  相似文献   

11.
Selectively targeting the membrane‐perturbing potential of peptides towards a distinct cellular phenotype allows one to target distinct populations of cells. We report the de novo design of a new class of peptide whose ability to perturb cellular membranes is coupled to an enzyme‐mediated shift in the folding potential of the peptide into its bioactive conformation. Cells rich in negatively charged surface components that also highly express alkaline phosphatase, for example many cancers, are susceptible to the action of the peptide. The unfolded, inactive peptide is dephosphorylated, shifting its conformational bias towards cell‐surface‐induced folding to form a facially amphiphilic membrane‐active conformer. The fate of the peptide can be further tuned by peptide concentration to affect either lytic or cell‐penetrating properties, which are useful for selective drug delivery. This is a new design strategy to afford peptides that are selective in their membrane‐perturbing activity.  相似文献   

12.
Chemical synthesis of peptides can allow the option of sequential formation of multiple cysteines through exploitation of judiciously chosen regioselective thiol‐protecting groups. We report the use of 2‐nitroveratryl (oNv) as a new orthogonal group that can be cleaved by photolysis under ambient conditions. In combination with complementary S‐pyridinesulfenyl activation, disulfide bonds are formed rapidly in situ. The preparation of Fmoc‐Cys(oNv)‐OH is described together with its use for the solid‐phase synthesis of complex cystine‐rich peptides, such as insulin.  相似文献   

13.
The N‐glycosylation of proteins is generated at the consensus sequence NXS/T (where X is any amino acid except proline) by the biosynthetic process, and occurs in the endoplasmic reticulum and Golgi apparatus. In order to investigate the influence of human complex‐type oligosaccharides on counterpart protein conformation, crambin and ovomucoide, which consist of 46 and 56 amino acid residues, respectively, were selected for synthesis of model glycoproteins. These small glycoproteins were intentionally designed to be glycosylated at the α‐helix (crambin: 8 position), β‐sheet (crambin: 2 position) and loop position between the antiparallel β‐sheets (ovomucoide: 28 position), and were synthesized by using a peptide‐segment coupling strategy. After preparation of these glycosylated polypeptide chains, protein folding experiments were performed under redox conditions by using cysteine–cystine. Although the small glycoproteins bearing intentional glycosylation at the α‐helix and β‐sheet exhibited a suitable folding process, glycosylation at the loop position between the antiparallel β‐strands caused multiple products. The conformational differences in the isolated homogeneous glycoproteins compared with non‐glycosylated counterparts were evaluated by circular dichroism (CD) and NMR spectroscopy. These analyses suggested that this intentional N‐glycosylation did not result in large conformational changes in the purified protein structures, including the case of glycosylation at the loop position between the antiparallel β‐strands. In addition to these experiments, the conformational properties of three glycoproteins were evaluated by CD spectroscopy under different temperatures. The oligosaccharides on the protein surface fluctuated considerably; this was dependent on the increase in the solution temperature and was thought to disrupt the protein tertiary structure. Based on the measurement of the CD spectra, however, the glycoproteins bearing three disulfide bonds did not exhibit any change in their protein tertiary structure. These results suggest that the oligosaccharide conformational fluctuations were not disruptive to protein tertiary structure, and the tertiary structure of glycoproteins might be stabilized by the disulfide bond network.  相似文献   

14.
In analogy to the cystine knots present in natural collagens, a simplified disulfide cross-link was used to analyse the conformational effects of a C-terminal artificial cystine knot on the folding of collagenous peptides consisting of solely (Pro-Hyp-Gly) repeating units. Assembly of the alpha chains into a heterotrimer by previously applied regioselective disulfide-bridging strategies failed because of the high tendency of (Pro-Hyp-Gly)(5) peptides to self-associate and form homotrimers. Only when side-chain-protected peptides were used, for example in the Hyp(tBu) form, and a new protection scheme was adopted, selective interchain-disulfide cross-linking into the heterotrimer in organic solvents was successful. This unexpected strong effect of the conformational properties on the efficiency of well-established reactions was further supported by replacing the Hyp residues with (4S)-fluoroproline, which is known to destabilise triple-helical structures. With the related [Pro-(4S)-FPro-Gly](5) peptides, assembly of the heterotrimer in aqueous solution proceeded in a satisfactory manner. Both the intermediates and the final fluorinated heterotrimer are fully unfolded in aqueous solution even at 4 degrees C. Conversely, the disulfide-crossbridged (Pro-Hyp-Gly)(5) heterotrimer forms a very stable triple helix. The observation that thermal unfolding leads to scrambling of the disulfide bridges was unexpected. Although NMR experiments support an extension of the triple helix into the cystine knot, thermolysis is not associated with the unfolding process. In fact, the unstructured fluorinated trimer undergoes an equally facile thermodegradation associated with the intrinsic tendency of unsymmetrical disulfides to disproportionate into symmetrical disulfides under favourable conditions. The experimental results obtained with the model peptides fully support the role of triple-helix nucleation and stabilisation by the artificial cystine knot as previously suggested for the natural cystine knots in collagens.  相似文献   

15.
The gas‐phase free radical initiated peptide sequencing (FRIPS) fragmentation behavior of o‐TEMPO‐Bz‐conjugated peptides with an intra‐ and intermolecular disulfide bond was investigated using MSn tandem mass spectrometry experiments. Investigated peptides included four peptides with an intramolecular cyclic disulfide bond, Bactenecin (RLC RIVVIRVC R), TGF‐α (C HSGYVGVRC ), MCH (DFDMLRC MLGRVFRPC WQY) and Adrenomedullin (16–31) (C RFGTC TVQKLAHQIY), and two peptides with an intermolecular disulfide bond. Collisional activation of the benzyl radical conjugated peptide cation, which was generated through the release of a TEMPO radical from o‐TEMPO‐Bz‐conjugated peptides upon initial collisional activation, produced a large number of peptide backbone fragments in which the S? S or C? S bond was readily cleaved. The observed peptide backbone fragments included a‐, c‐, x‐ or z‐types, which indicates that the radical‐driven peptide fragmentation mechanism plays an important role in TEMPO‐FRIPS mass spectrometry. FRIPS application of the linearly linked disulfide peptides further showed that the S? S or C? S bond was selectively and preferentially cleaved, followed by peptide backbone dissociations. In the FRIPS mass spectra, the loss of ?SH or ?SSH was also abundantly found. On the basis of these findings, FRIPS fragmentation pathways for peptides with a disulfide bond are proposed. For the cleavage of the S? S bond, the abstraction of a hydrogen atom at Cβ by the benzyl radical is proposed to be the initial radical abstraction/transfer reaction. On the other hand, H‐abstraction at Cα is suggested to lead to C? S bond cleavage, which yields [ion ± S] fragments or the loss of ?SH or ?SSH. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The cyclotides are a family of small disulfide rich proteins that have a cyclic peptide backbone and a cystine knot formed by three conserved disulfide bonds. The combination of these two structural motifs contributes to the exceptional chemical, thermal and enzymatic stability of the cyclotides, which retain bioactivity after boiling. They were initially discovered based on native medicine or screening studies associated with some of their various activities, which include uterotonic action, anti-HIV activity, neurotensin antagonism, and cytotoxicity. They are present in plants from the Rubiaceae, Violaceae and Cucurbitaceae families and their natural function in plants appears to be in host defense: they have potent activity against certain insect pests and they also have antimicrobial activity. There are currently around 50 published sequences of cyclotides and their rate of discovery has been increasing over recent years. Ultimately the family may comprise thousands of members. This article describes the background to the discovery of the cyclotides, their structural characterization, chemical synthesis, genetic origin, biological activities and potential applications in the pharmaceutical and agricultural industries. Their unique topological features make them interesting from a protein folding perspective. Because of their highly stable peptide framework they might make useful templates in drug design programs, and their insecticidal activity opens the possibility of applications in crop protection.  相似文献   

17.
The self‐assembly of peptides and proteins under well‐controlled conditions underlies important nanostructuring processes that could be harnessed in practical applications. Herein, the synthesis of a new hairpin peptide containing four histidine residues is reported and the self‐assembly process mediated by metal ions is explored. The work involves the combined use of circular dichroism, NMR spectroscopy, UV/Vis spectroscopy, AFM, and TEM to follow the structural and morphological details of the metal‐coordination‐mediated folding and self‐assembly of the peptide. The results indicate that by forming a tetragonal coordination geometry with four histidine residues, copper(II) ions selectively trigger the peptide to fold and then self‐assemble into nanofibrils. Furthermore, the copper(II)‐bound nanofibrils template the synthesis of CuS nanowires, which display a near‐infrared laser‐induced thermal effect.  相似文献   

18.
Disulfide bonds typically introduce conformational constraints into peptides and proteins, conferring improved biopharmaceutical properties and greater therapeutic potential. In our opinion, disulfide‐rich microdomains from proteins are potentially a rich and under‐explored source of drug leads. A survey of the UniProt protein database shows that these domains are widely distributed throughout the plant and animal kingdoms, with the EGF‐like domain being the most abundant of these domains. EGF‐like domains exhibit large diversity in their disulfide bond topologies and calcium binding modes, which we classify in detail here. We found that many EGF‐like domains are associated with disease phenotypes, and the interactions they mediate are potential therapeutic targets. Indeed, EGF‐based therapeutic leads have been identified, and we further propose that these domains can be optimized to expand their therapeutic potential using chemical design strategies. This Review highlights the potential of disulfide‐rich microdomains as future peptide therapeutics.  相似文献   

19.
Peptides containing selenocysteine moieties are susceptible to non-catalytic reactions of diselenide bonds metathesis induced by visible light. In contrast to previously reported radical metathesis of disulfide bridges in cysteine derivatives, this newly developed reaction is fast and clean, and proceeds without decomposition of peptides and without formation of side products. The diselenide bond in peptides was reported in literature to be more stable than the disulfide one and also less susceptible to metathesis induced by thiols and reducing reagents. We demonstrated that visible light induces fast metathesis of Se−Se bonds in peptides. This reaction is important for the folding of peptides containing selenocysteine residues and may find application in designing dynamic combinatorial libraries of peptides responsive to external influence.  相似文献   

20.
Short peptides that fold into β‐hairpins are ideal model systems for investigating the mechanism of protein folding because their folding process shows dynamics typical of proteins. We performed folding, unfolding, and refolding molecular dynamics simulations (total of 2.7 μs) of the 10‐residue β‐hairpin peptide chignolin, which is the smallest β‐hairpin structure known to be stable in solution. Our results revealed the folding mechanism of chignolin, which comprises three steps. First, the folding begins with hydrophobic assembly. It brings the main chain together; subsequently, a nascent turn structure is formed. The second step is the conversion of the nascent turn into a tight turn structure along with interconversion of the hydrophobic packing and interstrand hydrogen bonds. Finally, the formation of the hydrogen‐bond network and the complete hydrophobic core as well as the arrangement of side‐chain–side‐chain interactions occur at approximately the same time. This three‐step mechanism appropriately interprets the folding process as involving a combination of previous inconsistent explanations of the folding mechanism of the β‐hairpin, that the first event of the folding is formation of hydrogen bonds and the second is that of the hydrophobic core, or vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号