首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two red-emitting dicyanomethylene-4H-pyran (DM) based fluorescent probes were designed and used for peroxynitrite (ONOO) detection. Nevertheless, the aggregation-caused quenching effect diminished the fluorescence and restricted their further applications. To overcome this problem, tetraphenylethylene (TPE) based glycoclusters were used to self-assemble with these DM probes to obtain supramolecular water-soluble glyco-dots. This self-assembly strategy enhanced the fluorescence intensity, leading to an enhanced selectivity and activity of the resulting glyco-dot comparing to DM probes alone in PBS buffer. The glyco-dots also exhibited better results during fluorescence sensing of intracellular ONOO than the probes alone, thereby offering scope for the development of other similar supramolecular glyco-systems for chemical biological studies.  相似文献   

2.
In this study, we developed an approach to fabricate novel 1D Ag NWs‐Ag NPs hybrid substrate for enhanced fluorescene detection of protoporphyrin IX (PpIX) based on surface plasmon‐enhanced fluorescence. The Ag NWs‐Ag NPs hybrid was synthesized by combining the hydrothermal method and self‐assembly method with the asisstance of polyvinylpyrrolidone (PVP). When the Ag NWs‐Ag NPs hybrid was deposited on the glass substrate and employed as active substrate to detect PpIX, the fluorescence intensity of PpIX was enhanced greatly due to the coupling effect of localized surface plasmon‐localized surface plasmon (LSP‐LSP) and localized surface plasmon‐surface plasmon propagation (LSP‐SPP) which induced great enhancement of the electromagnetic field. Furthermore, the enhancement effect was approximately linear when the concentration of PpIX was ranged from 1×10?7 mol/L to 2×10?5 mol/L, and the photobleaching phenomenon of PpIX was reduced greatly, indicating that the fabricated Ag NWs‐Ag NPs hybrid substrate had well performance for PpIX imaging. This work provides an effective approach to prepare highly sensitive and stable fluorescence enhancement substrate, and has great potential application in fluorescence imaging.  相似文献   

3.
《中国化学》2018,36(1):25-30
Multimodal imaging techniques have been demonstrated to be greatly advantageous in achieving accurate diagnosis and gained increasing attention in recent decades. Herein, we present a new strategy to integrate the complementary modalities of 19F magnetic resonance imaging (19F MRI) and fluorescence imaging (FI) into a polymer nanoprobe composed of hydrophobic fluorescent organic core and hydrophilic fluorinated polymer shell. The alkyne‐terminated fluorinated copolymer (Pn) of 2,2,2‐trifluoroethyl acrylate (TFEA) and poly(ethylene glycol) methyl ether acrylate (PEGA) was first prepared via atom transfer radical polymerization (ATRP). The PEGA plays an important role in both improving 19F signal and modulating the hydrophilicity of Pn. The alkynyl tail in Pn is readily conjugated with azide modified tetra‐phenylethylene (TPE) through click chemistry to form azo polymer (TPE‐azo‐Pn). The core‐shell nanoprobes (TPE‐P3N) with an average particle size of 57.2 ± 8.8 nm are obtained via self‐assembly with ultrasonication in aqueous solution. These nanoprobes demonstrate high water stability, good biocompatibility, strong fluorescence and good 19F MRI performance, which present great potentials for simultaneous fluorescence imaging and 19F–MR imaging.  相似文献   

4.
We report a new strategy for template-mediated fluorogenic chemistry that results in enhanced performance for the fluorescence detection of nucleic acids. In this approach, two successive templated reactions are required to induce a fluorescence signal, rather than only one. These novel fluorescein-labeled oligonucleotide probes, termed 2-STAR (STAR = Staudinger-triggered α-azidoether release) probes, contain two quencher groups tethered by separate reductively cleavable linkers. When a 2-STAR quenched probe successively binds adjacent to two mono-triphenylphosphine-(TPP)-DNAs or one dual-TPP-DNA, the two quenchers are released, resulting in a fluorescence signal. Because of the requirement for two consecutive reactions, 2-STAR probes display an unprecedented level of sequence specificity for template-mediated probe designs. At the same time, background emission generated by off-template reactions or incomplete quenching is among the lowest of any fluorogenic reactive probes for the detection of DNA or RNA.  相似文献   

5.
Despite the growing literature about diphenylalanine‐based peptide materials, it still remains a challenge to delineate the theoretical insight into peptide nanostructure formation and the structural features that could permit materials with enhanced properties to be engineered. Herein, we report the synthesis of a novel peptide building block composed of six phenylalanine residues and eight PEG units, PEG8‐F6. This aromatic peptide self‐assembles in water in stable and well‐ordered nanostructures with optoelectronic properties. A variety of techniques, such as fluorescence, FTIR, CD, DLS, SEM, SAXS, and WAXS allowed us to correlate the photoluminescence properties of the self‐assembled nanostructures with the structural organization of the peptide building block at the micro‐ and nanoscale. Finally, a model of hexaphenylalanine in aqueous solution by molecular dynamics simulations is presented to suggest structural and energetic factors controlling the formation of nanostructures.  相似文献   

6.
Fluorescent dyes with multi‐functionality are of great interest for photo‐based cancer theranostics. However, their low singlet oxygen quantum yield impedes their potential applications for photodynamic therapy (PDT). Now, a molecular self‐assembly strategy is presented for a nanodrug with a remarkably enhanced photodynamic effect based on a dye‐chemodrug conjugate. The self‐assembled nanodrug possesses an increased intersystem crossing rate owing to the aggregation of dye, leading to a distinct singlet oxygen quantum yield (Φ(1O2)). Subsequently, upon red light irradiation, the generated singlet oxygen reduces the size of the nanodrug from 90 to 10 nm, which facilitates deep tumor penetration of the nanodrug and release of chemodrug. The nanodrug achieved in situ tumor imaging and potent tumor inhibition by deep chemo‐PDT. Our work verifies a facile and effective self‐assembly strategy to construct nanodrugs with enhanced performance for cancer theranostics.  相似文献   

7.
Pyrene‐containing water‐soluble probes for the fluorescent detection of nitroaromatic compounds (NACs), such as explosive components (2,4‐DNT and 2,4,6‐TNT) and herbicides (2,4‐dinitrocresol, 2,4‐DNOC), in aqueous media are reported. In the probes, the introduction of surface‐active hydrophilic “heads” at the periphery of lipophilic (i.e., hydrophobic) pyrene “tails” resulted in the formation of highly fluorescent micelle‐like aggregates/pre‐associates in aqueous solutions at concentrations of ≤10?5 m . The enhanced fluorescence quenching of the herein reported architectures is achieved in the presence of ultra‐trace amounts of TNT or 2,4‐DNT with values of Stern–Volmer quenching constant close to 1×105 m ?1 and a detection limit as low as 182 ppb. The most hydrophilic probes demonstrated higher response to 2,4‐DNT over TNT. Filter paper test strips impregnated with 1×10?5 m solutions of the probes were able to detect TNT, 2,4‐DNT, and other NACs at levels as low as 50 ppb in water.  相似文献   

8.
A highly luminescent Zn4L6 tetrahedron is reported with 3.8 nm perylene bisimide edges and hexadentate ZnII–imine chelate vertices. Replacing FeII and monoamines commonly utilized in subcomponent self‐assembly with ZnII and tris(2‐aminoethyl)amine provides access to a metallosupramolecular host with the rare combination of structural integrity at concentrations <10?7 mol L?1 and an exceptionally high fluorescence quantum yield of Φem=0.67. Encapsulation of multiple perylene or coronene guest molecules is accompanied by strong luminescence quenching. We anticipate this self‐assembly strategy may be generalized to improve access to brightly fluorescent coordination cages tailored for host–guest light‐harvesting, photocatalysis, and sensing.  相似文献   

9.
在本文中,我们研制了一种基于T-T碱基错配特异性键合汞离子的荧光传感器用于汞离子的检测。该传感器由两条分别标记了荧光基团(F)和淬灭基团(Q)的DNA探针组成,并且含有两对用于结合汞离子的T-T错配碱基。当汞离子存在时,两条探针之间形成T-Hg2+-T结构,作用力增强,从而拉近了荧光基团与淬灭基团之间的距离,发生能量转移,使荧光信号在一定程度上被淬灭。在优化的条件下,我们使用该传感器对汞离子进行检测,动力学响应范围为50nM到1000nM,线性相关方程为y= 5281.13 - 1650.56 lg[Hg2+] ( R2 = 0.985),检测下限为79nM。此外,我们还考察了该传感器的选择性,当用其它干扰离子(浓度都为1.0µM)代替待测离子进行实验时,没有发生明显的荧光淬灭,说明该传感器具有较高的选择性。该传感器的构建为汞离子的检测提供了一条快速、简便的新途径。  相似文献   

10.
《化学:亚洲杂志》2017,12(2):216-223
Self‐host thermally activated delayed fluorescence (TADF) materials have recently been identified as effective emitters for solution‐processed nondoped organic light‐emitting diodes (OLEDs). However, except for the carbazole unit, few novel dendrons have been developed to build self‐host TADF emitters. This study reports two self‐host blue materials, tbCz‐SO and poCz‐SO, with the same TADF emissive core and different dendrons. The influence of the peripheral dendrons on the photophysical properties and electroluminescent performances of the self‐host materials were systematically investigated. The transient fluorescence and electroluminescence spectra indicated that the diphenylphosphoryl carbazole units could effectively encapsulate the emissive core to reduce the concentration quenching effect and to enhance reverse intersystem crossing. By using tbCz‐SO and poCz‐SO as host‐free blue emitters, the performance of the solution‐processed nondoped OLED device demonstrated that a more balanced charge transfer from the bipolar dendrons would offer a better current efficiency of 10.5 cd A−1 and stable color purity with Commission Internationale de L'Eclairage units of (0.18, 0.27).  相似文献   

11.
Organic building blocks are the centerpieces of “one‐for‐all” nanoparticle development. Herein, we report the synthesis of a novel aza‐BODIPY‐lipid building block and its self‐assembly into a liposomal nanoparticle (BODIPYsome). We observed optically stable NIR J‐aggregation within the BODIPYsome that is likely attributed to J‐dimerization. BODIPYsomes with cholesterol showed enhanced colloidal stability while maintaining a high extinction coefficient (128 mm ?1 cm?1) and high fluorescence quenching (99.70±0.09 %), which enables photoacoustic (PA) properties from its intact structure and recovered NIR fluorescence properties when it is disrupted in cancer cells. Finally, its capabilities for optical imaging (PA/fluorescence) were observed in an orthotopic prostate tumor mouse model 24 h after intravenous administration. Overall, the BODIPYsome opens the door for engineering new building blocks in the design of optically stable biophotonic imaging agents.  相似文献   

12.
The introduction of high‐frequency, high‐power microwave sources, tailored biradicals, and low‐temperature magic angle spinning (MAS) probes has led to a rapid development of hyperpolarization strategies for solids and frozen solutions, leading to large gains in NMR sensitivity. Here, we introduce a protocol for efficient hyperpolarization of 19F nuclei in MAS DNP enhanced NMR spectroscopy. We identified trifluoroethanol‐d3 as a versatile glassy matrix and show that 12 mm AMUPol (with microcrystalline KBr) provides direct 19F DNP enhancements of over 100 at 9.4 T. We applied this protocol to obtain DNP‐enhanced 19F and 19F–13C cross‐polarization (CP) spectra for an active pharmaceutical ingredient and a fluorinated mesostructured hybrid material, using incipient wetness impregnation, with enhancements of approximately 25 and 10 in the bulk solid, respectively. This strategy is a general and straightforward method for obtaining enhanced 19F MAS spectra from fluorinated materials.  相似文献   

13.
An L ‐phenylalanine derivative ( C12PhBPCP ) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self‐assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self‐assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H‐aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self‐assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively.  相似文献   

14.
Bismaleimides having electron‐donating diphenylmethylamine or triphenylamine moieties (A(=)‐D(*)‐A(=)), as well as their saturated model compounds were synthesized. Their fluorescence behavior was found to show a strong fluorescence structural self‐quenching effect (SSQE). On the basis of this strong SSQE of A(=)‐D(*)‐A(=) bismaleimides, a new fluorescence approach can be developed to monitor the curing process in bismaleimide resins, which is in agreement with the results from FT‐IR and 1H NMR analyses.  相似文献   

15.
Fluorescence quenching in phenylalanine and model compounds   总被引:1,自引:0,他引:1  
Abstract— The effects of the carboxylic and amino groups in their neutral and charged forms on the absorption and emission properties of phenylalanine are analyzed with the help of model compounds containing either substituent. Fluorescence yields of phenylalanine and model compounds were measured as a function of pH. Fluorescence quenching occurs in going from COO- to COOH and from NH3+ to NH2. Lowering the ionization potential of the phenyl group by substitution increases the quenching effect. This provides more evidence that an intramolecular charge-transfer mechanism may be responsible for intersystem-crossing rate enhancement and fluorescence quenching in phenylalanine and model compounds.  相似文献   

16.
The need for advanced fluorescent imaging and delivery platforms has motivated the development of smart probes that change their fluorescence in response to external stimuli. Here a new molecular design of fluorescently labeled PEG–dendron hybrids that self‐assemble into enzyme‐responsive micelles with tunable fluorescent responses is reported. In the assembled state, the fluorescence of the dyes is quenched or shifted due to intermolecular interactions. Upon enzymatic cleavage of the hydrophobic end‐groups, the labeled polymeric hybrids become hydrophilic, and the micelles disassemble. This supramolecular change is translated into a spectral response as the dye–dye interactions are eliminated and the intrinsic fluorescence is regained. We demonstrate the utilization of this molecular design to generate both Turn‐On and spectral shift responses by adjusting the type of the labeling dye. This approach enables transformation of non‐responsive labeling dyes into smart fluorescent probes.  相似文献   

17.
The measurement of biologically relevant anions, such as fluoride, is an important task in analytical chemistry, in particular, for dental health and osteoporosis. Although a large number of fluoride probes are known, the applicability under relevant conditions is limited to a few examples. To improve this situation, BODIPY‐amidothiourea dyes with varying hydrogen‐bond donating strengths were developed, the most H‐acidic of which ( 1 c ) could detect F? from an inorganic source (NaF) in 50 % aqueous solution (DMSO/water 1:1, v/v) with 0.01 ppm sensitivity through selective fluorescence quenching by a photoinduced electron‐transfer (PET) process. Use of the probe and a reference dye with a test‐strip assay and a portable and rapidly recording lateral‐flow fluorescence reader made determination of F? in neat aqueous solutions, such as spiked water samples and toothpaste extracts, possible in a self‐referenced manner, achieving a detection limit of 0.2 ppm.  相似文献   

18.
The competitive reaction between ethambutol and two fluorescent probes (i.e., berberine and palmatine) for occupancy of the cucurbit[7]uril (CB[7]) cavity was studied by spectrofluorometry. The CB[7] reacts with these probes to form stable complexes, and the fluorescence intensity of the complexes is greatly enhanced. In addition, the excitation and emission wavelengths of their complexes moved to wavelengths of 343 nm and 495 nm, respectively. However, the addition of ethambutol dramatically quenches the fluorescence intensity of the two complexes. Accordingly, a couple of new fluorescence quenching methods for the determination of ethambutol were established. The methods can be applied for quantifying ethambutol. A linear relationship between the fluorescence quenching values (ΔF) and ethambutol concentration exists in the range of 5.0-1000.0 ng mL(-1), with a correlation coefficient (r) of 0.9997. The detection limit is 1.7 ng mL(-1). The fluorescent probe of berberine has higher sensitivity than palmatine. This paper also discusses the mechanism of fluorescence indicator probes.  相似文献   

19.
The origin of the positive temperature effect in fluorescence emission of a newly designed perylene bisimide (PBI) derivative with two naphthyl units containing ortho‐methoxy group (NM) at its bay positions (PBI‐2NM) was elucidated. A key point is the finding of a weak hydrogen bond (<5.0 kcal mol?1) between the methoxy group of the NM unit and a nearby hydrogen atom of the PBI core. It is the bonding that drives co‐planarization of the different aromatic units, resulting in delocalization of the π‐electrons of the compound as synthesized, inducing fluorescence quenching via intramolecular charge transfer (ICT). With increasing temperature, the co‐planar structure could be distorted in part, resulting in a decreased degree of ICT, and hence leading to enhanced fluorescence emission. The unique positive temperature effect in emission induced by H‐bond‐driven co‐planarization may pave a new avenue in designing functional molecular systems complementary to conventional methods.  相似文献   

20.
A fluorescent self‐assembly of cephalexin is obtained by pulsed laser irradiation process. An intense fluorescence emission is found in the self‐assembled form due to occurrence of a typical aggregation‐induced emission in cephalexin molecules. It is observed that fluorescence quenching of the self‐assembled fluorescent nanostructures occurs in the presence of extremely low Hg++ ions concentrations (10?7 m ) as compared to other heavy metal ions e.g. Ferrous (Fe++), Manganese (Mn++), Magnesium (Mg++), Cobalt (Co++), Nickel (Ni++) and Zinc (Zn++) at the same concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号