首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The complexation of two equivalents of a cyclic (alkyl)(amino)carbene (CAAC) to tetrabromodiborane, followed by reduction with four equivalents of sodium naphthalide, led to the formation of the CAAC‐stabilized linear diboracumulene (CAAC)2B2. The capacity of the CAAC ligand to facilitate B2→CAAC donation of π‐electron density resulted in important differences between this species and a previously reported complex featuring a B?B triple bond stabilized by cyclic di(amino)carbenes, including a longer B? B bond and shorter B? C bonds. Frontier orbital analysis indicated sharing of valence electrons across the entire linear C‐B‐B‐C unit in (CAAC)2B2, which is supported by natural population analysis and cyclic voltammetry.  相似文献   

2.
The synthesis of trans axially substituted mono‐ ( 1 a ) and bis(tert‐butylisocyanide) ( 1 b ) derivatives of the highly active homogeneous bio‐inspired iron(II) olefin epoxidation (pre‐)catalyst 1 bearing an equatorial macrocyclic tetra N‐heterocyclic carbene and two trans axial labile acetonitrile ligands is reported. NMR spectroscopy and SC‐XRD indicate a considerable π‐backdonation from the iron(II) centres to the isocyanide ligand(s). The impact of isocyanide substitution on the electronic features of the complexes is studied by cyclic voltammetry revealing a significant increase in half‐cell potential assignable to the reversible Fe(II)/Fe(III) redox couple with an increasing number of isocyanides as a result of their π‐accepting properties: E1/2=0.15 V ( 1 ), E1/2=0.35 V ( 1 a ), E1/2=0.44 V ( 1 b ).  相似文献   

3.
A new compound with the formula L‐B2‐L wherein the stabilizing ligand (L) is 1,3‐bis[diisopropylphenyl]‐4,5‐dihydroimidazol‐2‐ylidene (SIDip) has been synthesized, isolated, and characterized. The π‐acidity of the SIDip ligand, intermediate between the relatively non‐acidic IDip (1,3‐bis[diisopropylphenyl]imidazol‐2‐ylidene) ligand and the much more highly acidic CAAC (1‐[2,6‐diisopropylphenyl]‐3,3,5,5‐tetramethylpyrrolidin‐2‐ylidene) ligand, gives rise to a compound with spectroscopic, electrochemical, and structural properties between those of L‐B2‐L compounds stabilized by CAAC and IDip. Reactions of all three L‐B2‐L compounds with CO demonstrate the differences caused by their respective ligands, as the π‐acidities of the CAAC and SIDip carbenes enabled the isolation of bis(boraketene) compounds (L(OC)B‐B(CO)L), which could not be isolated from reactions with B2(IDip)2. However, only B2(IDip)2 and B2(SIDip)2 could be converted into bicyclic bis(boralactone) compounds.  相似文献   

4.
The CAAC [CAAC=cyclic (alkyl)(amino)carbene] family of carbene ligands have shown promise in stabilizing unusually low‐coordination number transition‐metal complexes in low formal oxidation states. Here we extend this narrative by demonstrating their utility in affording access to the first examples of two‐coordinate formal Fe0 and Co0 [(CAAC)2M] complexes, prepared by reduction of their corresponding two‐coordinate cationic FeI and CoI precursors. The stability of these species arises from the strong σ‐donating and π‐accepting properties of the supporting CAAC ligands, in addition to steric protection.  相似文献   

5.
Aromatized cationic [(PNN)Re(π acid)(O)2]+ ( 1 ) and dearomatized neutral [(PNN*)Re(π acid)(O)2] ( 2 ) complexes (where π acid=CO ( a ), tBuNC ( b ), or (2,6‐Me2)PhNC ( c )), possessing both π‐donor and π‐acceptor ligands, have been synthesized and fully characterized. Reaction of [(PNN)Re(O)2]+ ( 4 ) with lithiumhexamethyldisilazide (LiHMDS) yield the dearomatized [(PNN*)Re(O)2] ( 3 ). Complexes 1 and 2 are prepared from the reaction of 4 and 3 , respectively, with CO or isocyanides. Single‐crystal X‐ray structures of 1 a and 1 b show the expected trans‐dioxo structure, in which the oxo ligands occupy the axial positions and the π‐acidic ligand occupies the equatorial plane in an overall octahedral geometry about the rhenium(V) center. DFT studies revealed the stability of complexes 1 and 2 arises from a π‐backbonding interaction between the dxy orbital of rhenium, the π orbital of the oxo ligands, and the π* orbital of CO/isocyanide.  相似文献   

6.
Singly NHC‐coordinated (aminoboryl)aminoborenium salts react with Na2[Fe(CO)4] to yield stable coordination complexes of aminoborylene‐stabilized aminoborylenes, which exhibit exceptional σ‐donor properties. Upon photolytic CO extrusion from the metal center, the diboron ligand adopts a novel η3‐BBN coordination mode, where bond‐strengthening backdonation from the metal center into the vacant B?B π‐orbital is observed. This bonding situation can be alternatively described as a Fe‐diaminodiborene complex. In a related reduction of CAAC‐stabilized (aminoboryl)aminoborenium with KC8, the reduced species can be captured with nucleophiles to form three‐coordinate (diaminoboryl)borylenes, where both amino groups have migrated to the distal boron atom. Collectively, these reactions illustrate the isomeric flexibility imparted by amino groups on this reduced diboron system, thus opening multiple avenues of novel reactivity.  相似文献   

7.
Electron‐deficient small boron rings are unique in their formation of σ‐ and π‐delocalized electron systems as well as the avoidance of “classical” structures with two‐center‐two‐electron (2c,2e) bonds. These rings are tolerant of several skeletal electron numbers, which makes their redox chemistry highly interesting. In the past few decades, a range of stable compounds have been synthesized with various electron numbers in their B3 and B4 cores. The electronic structures were evaluated by quantum‐chemical calculations. On the other hand, the chemistry of these rings is still very much underdeveloped, being generally limited to the protonation and redox reactions of individual systems. The linkage of several B3 and/or B4 ring systems should give compounds with attractive electronic properties, thus leading the way to novel boron‐based materials. By summarizing important experimental and theoretical results, this Review intends to provide the basis for the exploration of the chemistry of these rings and, in particular, their integration into larger molecular architectures.  相似文献   

8.
Condensation of 1,8‐diamino‐3,6‐dichlorocarbazole with a series of disubstituted 1,3‐diiminoisoindolines, followed by treatment with BF3?OEt2 led to the formation of the corresponding core‐expanded boron(III) subphthalocyanine analogues. These air‐stable π‐conjugated boron(III) carbazosubphthalocyanines possess two boron‐containing seven‐membered‐ring units and a 16 π‐electron skeleton, and represent the first examples of antiaromatic boron(III) subphthalocyanine analogues as supported by spectroscopic and theoretical studies. The molecular structure of one of these compounds was unambiguously determined by single‐crystal X‐ray diffraction analysis. In contrast to typical boron(III) subphthalocyanines, which adopt a cone‐shaped structure, the π skeleton of this compound is almost planar.  相似文献   

9.
Owing to their unique topologies and abilities to self‐assemble into a variety of extended and aggregated structures, the binary platinum carbonyl clusters [Pt3(CO)6]n2? (“Chini clusters”) continue to draw significant interest. Herein, we report the isolation and structural characterization of the trinuclear electron‐transfer series [Pt3(μ‐CO)3(CNArDipp2)3]n? (n=0, 1, 2), which represents a unique set of monomeric Pt3 clusters supported by π‐acidic ligands. Spectroscopic, computational, and synthetic investigations demonstrate that the highest‐occupied molecular orbitals of the mono‐ and dianionic clusters consist of a combined π*‐framework of the CO and CNArDipp2 ligands, with negligible Pt character. Accordingly, this study provides precedent for an ensemble of carbonyl and isocyanide ligands to function in a redox non‐innocent manner.  相似文献   

10.
A triangulene‐based C2‐symmetric 33 π‐conjugated stable neutral π‐radical, 2. , which possesses two dicyanomethylene groups and one oxo group, has been designed, synthesized, and isolated as an analogue of tris(dicyanomethylene) derivative 1. and trioxo derivative TOT. with C3 symmetry. Effects of molecular‐symmetry reduction and electron‐accepting substituents on this fused polycyclic neutral π‐radical system were studied in terms of their molecular structure, electronic‐spin structure, and electrochemical and optical properties with the help of theoretical calculations. Interestingly, this system ( 2. ) has a four‐stage redox ability, like TOT. , as well as low frontier energy levels and a small SOMO–LUMO gap, similar to 1. , in spite of the loss of the degenerate LUMOs in symmetry‐lowered 2. , which is associated with the attachment of the weaker electron‐accepting oxo group instead of the dicyanomethylene group in 1. . These prominent results are attributable to the structural and electronic properties in the triangulene‐based highly delocalized fused polycyclic neutral π‐radical system.  相似文献   

11.
We introduce a new boron‐doped cyclophane, the hexabora[16]cyclophane B6‐FMes , in which six tricoordinate borane moieties alternate with short conjugated p‐phenylene linkers. Exocyclic 2,4,6‐tris(trifluoromethyl)phenyl (FMes) groups serve not only to further withdraw electron density but at the same time sterically shield the boron atoms, resulting in a macrocycle that is both highly electron‐deficient and stable. The optical and electronic properties are compared with those of related linear oligomers and the electronic structure is further evaluated by computational methods. The studies uncover unique properties of B6‐FMes , including a low‐lying and extensively delocalized LUMO and a wide HOMO–LUMO gap, which arise from the combination of a cyclic π‐system, strong electronic communication between the closely spaced borons, and the attachment of electron‐deficient pendent groups. The binding of small anions to the electron‐deficient macrocycle and molecular model compounds is investigated and emissive exciplexes are detected in aromatic solvents.  相似文献   

12.
The proximal axial ligand in heme iron enzymes plays an important role in tuning the reactivities of iron(IV)‐oxo porphyrin π‐cation radicals in oxidation reactions. The present study reports the effects of axial ligands in olefin epoxidation, aromatic hydroxylation, alcohol oxidation, and alkane hydroxylation, by [(tmp)+. FeIV(O)(p‐Y‐PyO)]+ ( 1 ‐Y) (tmp=meso‐tetramesitylporphyrin, p‐Y‐PyO=para‐substituted pyridine N‐oxides, and Y=OCH3, CH3, H, Cl). In all of the oxidation reactions, the reactivities of 1 ‐Y are found to follow the order 1 ‐OCH3 > 1 ‐CH3 > 1 ‐H > 1 ‐Cl; negative Hammett ρ values of ?1.4 to ?2.7 were obtained by plotting the reaction rates against the σp values of the substituents of p‐Y‐PyO. These results, as well as previous ones on the effect of anionic nucleophiles, show that iron(IV)‐oxo porphyrin π‐cation radicals bearing electron‐donating axial ligands are more reactive in oxo‐transfer and hydrogen‐atom abstraction reactions. These results are counterintuitive since iron(IV)‐oxo porphyrin π‐cation radicals are electrophilic species. Theoretical calculations of anionic and neutral ligands reproduced the counterintuitive experimental findings and elucidated the root cause of the axial ligand effects. Thus, in the case of anionic ligands, as the ligand becomes a better electron donor, it strengthens the FeO? H bond and thereby enhances its H‐abstraction activity. In addition, it weakens the Fe?O bond and encourages oxo‐transfer reactivity. Both are Bell–Evans–Polanyi effects, however, in a series of neutral ligands like p‐Y‐PyO, there is a relatively weak trend that appears to originate in two‐state reactivity (TSR). This combination of experiment and theory enabled us to elucidate the factors that control the reactivity patterns of iron(IV)‐oxo porphyrin π‐cation radicals in oxidation reactions and to resolve an enigmatic and fundamental problem.  相似文献   

13.
New isocyanide ligands with meta‐terphenyl backbones were synthesized. 2,6‐Bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exhibited the highest rate acceleration in rhodium‐catalyzed hydrosilylation among other isocyanide and phosphine ligands tested in this study. 1H NMR spectroscopic studies on the coordination behavior of the new ligands to [Rh(cod)2]BF4 indicated that 2,6‐bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exclusively forms the biscoordinated rhodium–isocyanide complex, whereas less sterically demanding isocyanide ligands predominantly form tetracoordinated rhodium–isocyanide complexes. FTIR and 13C NMR spectroscopic studies on the hydrosilylation reaction mixture with the rhodium–isocyanide catalyst showed that the major catalytic species responsible for the hydrosilylation activity is the Rh complex coordinated with the isocyanide ligand. DFT calculations of model compounds revealed the higher affinity of isocyanides for rhodium relative to phosphines. The combined effect of high ligand affinity for the rhodium atom and the bulkiness of the ligand, which facilitates the formation of a catalytically active, monoisocyanide–rhodium species, is proposed to account for the catalytic efficiency of the rhodium–bulky isocyanide system in hydrosilylation.  相似文献   

14.
The crystal structure of one of the simplest organoboron compounds, trimethyl borate does not appear to have been determined hitherto. The compound is of interest for the study of π‐donor ligands and their interaction with the π‐acceptor behavior of trigonal boron and the consequences of such interactions on molecular structure. We used powder neutron (with isotopically labeled material) and X‐ray diffraction to determine the crystal structure of trimethyl borate at 15 K and 200 K (neutron) and 200 K (X‐ray). The material is hexagonal (Z = 2) with a = b = 6.950(8) Å and c = 6.501(3) Å at 15 K. The unit cell volume is 272.00(1) Å3. The space group is P63/m (SG 176) at 15 K and 200 K. This is the first crystal structure solved on the Neutron Powder Diffractometer (NPDF) at the Lujan Center.  相似文献   

15.
Neutral mesoionic carbenes (MICs) have emerged as an important class of carbene, however they are found in the free form or ligated to only a few d‐block ions. Unprecedented f‐block MIC complexes [M(N′′)3{CN(Me)C(Me)N(Me)CH}] (M=U, Y, La, Nd; N′′=N(SiMe3)2) are reported. These complexes were prepared by a formal 1,4‐proton migration reaction when the metal triamides [M(N′′)3] were treated with the N‐heterocyclic olefin H2C=C(NMeCH)2, which constitutes a new, general way to prepare MIC complexes. Quantum chemical calculations on the 5f3 uranium(III) complex suggest the presence of a U=C donor‐acceptor bond, composed of a MIC→U σ‐component and a U(5f)→MIC(2p) π‐back‐bond, but for the d0f0 Y and La and 4f3 Nd congeners only MIC→M σ‐bonding is found. Considering the generally negligible π‐acidity of MICs, this is surprising and highlights that greater consideration should possibly be given to recognizing MICs as potential π‐acid ligands when coordinated to strongly reducing metals.  相似文献   

16.
Complexation of a boron atom with a series of bidentate heterocyclic ligands successfully gives rise to corresponding BF2‐chelated heteroarenes, which could be considered as novel boron(III)‐cored dyes. These dye molecules exhibit planar structures and expanded π‐conjugated backbones due to the locked conformation with a boron center. The geometric and electronic structures of these BF2 complexes can be tailored by embedding heteroatoms in the unique modes to form positional isomer and isoelectronic structures. The structure–property relationship is further elucidated by studying the photophysical properties, electrochemical behavior and quantum‐chemical calculations.  相似文献   

17.
N‐Heterocyclic carbene (NHC)‐ and cyclic (alkyl)(amino)carbene (CAAC)‐stabilized borafluorene radicals have been isolated and characterized by elemental analysis, single‐crystal X‐ray diffraction, UV/Vis absorption, cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and theoretical studies. Both the CAAC–borafluorene radical ( 2 ) and the NHC–borafluorene radical ( 4 ) have a considerable amount of spin density localized on the boron atoms (0.322 for 2 and 0.369 for 4 ). In compound 2 , the unpaired electron is also partly delocalized over the CAAC ligand carbeneC and N atoms. However, the unpaired electron in compound 4 mainly resides throughout the borafluorene π‐system, with significantly less delocalization over the NHC ligand. These results highlight the Lewis base dependent electrostructural tuning of materials‐relevant radicals. Notably, this is the first report of crystalline borafluorene radicals, and these species exhibit remarkable solid‐state and solution stability.  相似文献   

18.
A series of novel dendronized π‐conjugated poly(isocyanide)s were synthesized successfully by using a Pd? Pt μ‐ethynediyl dinuclear complex ([ClPt{P(C2H5)3}2C?CPt{P(C2H5)3}2Cl]) as the initiator. The polymerizations of the dendronized monomers follow first‐order kinetics, indicating that living polymerization takes place. The obtained polymers exhibit narrow polydispersities in the range of 1.03–1.20. Thermal properties of the poly(isocyanide)s as well as their isocyanide monomers and precursors with formamido (HCONH‐) moieties as apexes were investigated by using differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide‐angle X‐ray diffraction (WAXD). Both the peripheries and the apex groups of the dendrons affect the formation of supramolecular column and/or cubic phases of the precursors and monomers. The formamido precursor forms a liquid‐crystalline phase due to intermolecular hydrogen bonding. The isocyanide monomer lacks this hydrogen‐bonding ability and does not display an organized mesophase. All of the rigid poly(isocyanide)s with the monodendrons exhibit columnar liquid‐crystalline phases. Interestingly, cylindrical structures of a poly(isocyanide) were directly visualized by using transmission electron microscopy (TEM).  相似文献   

19.
Bonding in borylene‐, carbene‐, and vinylidene‐bridged dinuclear manganese complexes [MnCp(CO)2]2X (X=B‐tBu, B=NMe2, CH2, C?CH2) has been compared by analyses based on quantum theory of atoms in molecules (QTAIM), on the electron‐localization function (ELF), and by natural‐population analyses. All of the density functional theory based analyses agree on the absence of a significant direct Mn? Mn bond in these complexes and confirm a dominance of delocalized bonding via the bridging ligand. Interestingly, however, the topology of both charge density and ELF related to the Mn‐bridge‐Mn bonding depend qualitatively on the chosen density functional (except for the methylene‐bridged complex, which exhibits only one three‐center‐bonding attractor both in ??2ρ and in ELF). While gradient‐corrected functionals provide a picture with localized two‐center X? Mn bonding, increasing exact‐exchange admixture in hybrid functionals concentrates charge below the bridging atom and suggests a three‐center bonding situation. For example, the bridging boron ligands may be described either as substituted boranes (e.g., at BLYP or BP86 levels) or as true bridging borylenes (e.g., at BHLYP level). This dependence on the theoretical level appears to derive from a bifurcation between two different bonding situations and is discussed in terms of charge transfer between X and Mn, and in the context of self‐interaction errors exhibited by popular functionals.  相似文献   

20.
A one‐electron reduction of a cyclic (alkyl)(amino)carbene (CAAC)–bis(trimethylsilyl)aminodichloroborane adduct leads to a stable aminoboryl radical. A second one‐electron reduction gives rise to a CAAC–aminoborylene adduct, which features an allenic structure. However, in manner similar to that of stable electrophilic singlet carbenes, this compound activates small molecules, such as CO and H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号