首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
G-protein-coupled-receptors (GPCRs) are of fundamental importance for signal transduction through cell membranes. This makes them important drug targets, but structure-based drug design (SBDD) is still hampered by the limitations for structure determination of unmodified GPCRs. We show that the interligand NOEs for pharmacophore mapping (INPHARMA) method can provide valuable information on ligand poses inside the binding site of the unmodified human A2A adenosine receptor reconstituted in nanodiscs. By comparing experimental INPHARMA spectra with back-calculated spectra based on ligand poses obtained from molecular dynamics simulations, a complex structure for A2AR with the low-affinity ligand 3-pyrrolidin-1-ylquinoxalin-2-amine was determined based on the X-ray structure of ligand ZM-241,358 in complex with a modified A2AR.  相似文献   

2.
Molecular docking is a powerful tool for theoretical prediction of the preferred conformation and orientation of small molecules within protein active sites. The obtained poses can be used for estimation of binding energies, which indicate the inhibition effect of designed inhibitors, and therefore might be used for in silico drug design. However, the evaluation of ligand binding affinity critically depends on successful prediction of the native binding mode. Contemporary docking methods are often based on scoring functions derived from molecular mechanical potentials. In such potentials, nonbonded interactions are typically represented by electrostatic interactions between atom‐centered partial charges and standard 6–12 Lennard–Jones potential. Here, we present implementation and testing of a scoring function based on more physically justified exponential repulsion instead of the standard Lennard–Jones potential. We found that this scoring function significantly improved prediction of the native binding modes in proteins bearing narrow active sites such as serine proteases and kinases. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Knowledge‐based scoring functions are widely used for assessing putative complexes in protein–ligand and protein–protein docking and for structure prediction. Even with large training sets, knowledge‐based scoring functions face the inevitable problem of sparse data. Here, we have developed a novel approach for handling the sparse data problem that is based on estimating the inaccuracies in knowledge‐based scoring functions. This inaccuracy estimation is used to automatically weight the knowledge‐based scoring function with an alternative, force‐field‐based potential (FFP) that does not rely on training data and can, therefore, provide an improved approximation of the interactions between rare chemical groups. The current version of STScore, a protein–ligand scoring function using our method, achieves a binding mode prediction success rate of 91% on the set of 100 complexes by Wang et al., and a binding affinity correlation of 0.514 with the experimentally determined affinities in PDBbind. The method presented here may be used with other FFPs and other knowledge‐based scoring functions and can also be applied to protein–protein docking and protein structure prediction. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Recently, a knowledge‐based scoring function has been introduced that estimates the protein‐binding affinity based on the 3D structure of a protein–ligand complex (J Med Chem 1999, 42, 791). A ligand volume correction factor has been proposed and applied to filter out intraligand interactions in this simplified potential approach. Here we evaluate the effect of the ligand volume correction on the predictive power of the PMF scoring function. It is found that the effect of the ligand volume correction is significant on the derived potentials and large on the overall score. However, the effect of the ligand correction on the predictive power of the scoring function appears to be smaller. For a test set containing serine proteases the predictive power of the PMF scoring function does not change with the introduction of the volume correction. For a test set of metalloprotease complexes, the predictive power of the PMF scoring function improves only slightly when the volume correction is applied. For five test sets comprising a total of 225 diverse protein ligand complexes taken from the Brookhaven Protein Data Bank it is found, however, that the introduction of the ligand volume correction consistently improves the correlation between the PMF scores and the measured binding affinities. The effect of the correction factor on docking/scoring experiments is also analyzed using a test set of 61 biphenyl inhibitor‐stromelysin complexes. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 418–425, 2001  相似文献   

5.
Targeted therapy is currently a hot topic in the fields of cancer research and drug design. An important requirement for this approach is the development of potent and selective inhibitors for the identified target protein. However, current ways to estimate inhibitor efficacy rely on empirical protein–ligand interaction scoring functions which, suffering from their heavy parameterizations, often lead to a low accuracy. In this work, we develop a nonfitting scoring function, which consists of three terms: (1) gas‐phase protein‐ligand binding enthalpy obtained by the eXtended ONIOM hybrid method based on an integration of density functional theory (DFT) methods (XYG3 and ωB97X‐D) and the semiempirical PM6 method, (2) solvation free energy based on DFT‐SMD solvation model, and (3) entropy effect estimated by using DFT frequency analysis. The new scoring function is tested on a cyclin‐dependent kinase 2 (CDK2) inhibitor database including 76 CDK2 protein inhibitors and a p21‐activated kinase 1 (PAK1) inhibitor database including 20 organometallic PAK1 protein inhibitors. From the results, good correlations are found between the calculated scores and the experimental inhibitor efficacies with the square of correlation coefficient R2 of 0.76–0.88. This suggests a good predictive power of this scoring function. To the best of our knowledge, this is the first high level theory‐based nonfitting scoring function with such a good level of performance. This scoring function is recommended to be used in the final screening of lead structure derivatives. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein–ligand complementarities. Interestingly, while protein–ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state‐of‐the‐art protein‐ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Scoring functions of protein–ligand interactions are widely used in computationally docking software and structure-based drug discovery. Accurate prediction of the binding energy between the protein and the ligand is the main task of the scoring function. The accuracy of a scoring function is normally evaluated by testing it on the benchmarks of protein–ligand complexes. In this work, we report the evaluation analysis of an improved version of scoring function SPecificity and Affinity (SPA). By testing on two independent benchmarks Community Structure-Activity Resource (CSAR) 2014 and Comparative Assessment of Scoring Functions (CASF) 2013, the assessment shows that SPA is relatively more accurate than other compared scoring functions in predicting the interactions between the protein and the ligand. We conclude that the inclusion of the specificity in the optimization can effectively suppress the competitive state on the funnel-like binding energy landscape, and make SPA more accurate in identifying the “native” conformation and scoring the binding decoys. The evaluation of SPA highlights the importance of binding specificity in improving the accuracy of the scoring functions.  相似文献   

8.
The microtubule‐associated protein Tau promotes the polymerization of tubulin and modulates the function of microtubules. As a consequence of the dynamic nature of the Tau–tubulin interaction, the structural basis of this complex has remained largely elusive. By using NMR methods optimized for ligand–receptor interactions in combination with site‐directed mutagenesis we demonstrate that the flanking domain downstream of the four microtubule‐binding repeats of Tau binds competitively to a site on the α‐tubulin surface. The binding process is complex, involves partial coupling of different interacting regions, and is modulated by phosphorylation at Y394 and S396. This study strengthens the hypothesis of an intimate relationship between Tau phosphorylation and tubulin binding and highlights the power of the INPHARMA NMR method to characterize the interaction of peptides derived from intrinsically disordered proteins with their molecular partners.  相似文献   

9.
Molecular docking is a computational approach for predicting the most probable position of ligands in the binding sites of macromolecules and constitutes the cornerstone of structure‐based computer‐aided drug design. Here, we present a new algorithm called Attracting Cavities that allows molecular docking to be performed by simple energy minimizations only. The approach consists in transiently replacing the rough potential energy hypersurface of the protein by a smooth attracting potential driving the ligands into protein cavities. The actual protein energy landscape is reintroduced in a second step to refine the ligand position. The scoring function of Attracting Cavities is based on the CHARMM force field and the FACTS solvation model. The approach was tested on the 85 experimental ligand–protein structures included in the Astex diverse set and achieved a success rate of 80% in reproducing the experimental binding mode starting from a completely randomized ligand conformer. The algorithm thus compares favorably with current state‐of‐the‐art docking programs. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

10.
11.
12.
Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein–ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl‐xL complex with ABT‐737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single‐ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X‐ray crystallographic maps, and aiding fragment‐based drug design, respectively. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
The prediction of binding modes (BMs) occurring between a small molecule and a target protein of biological interest has become of great importance for drug development. The overwhelming diversity of needs leaves room for docking approaches addressing specific problems. Nowadays, the universe of docking software ranges from fast and user friendly programs to algorithmically flexible and accurate approaches. EADock2 is an example of the latter. Its multiobjective scoring function was designed around the CHARMM22 force field and the FACTS solvation model. However, the major drawback of such a software design lies in its computational cost. EADock dihedral space sampling (DSS) is built on the most efficient features of EADock2, namely its hybrid sampling engine and multiobjective scoring function. Its performance is equivalent to that of EADock2 for drug‐like ligands, while the CPU time required has been reduced by several orders of magnitude. This huge improvement was achieved through a combination of several innovative features including an automatic bias of the sampling toward putative binding sites, and a very efficient tree‐based DSS algorithm. When the top‐scoring prediction is considered, 57% of BMs of a test set of 251 complexes were reproduced within 2 Å RMSD to the crystal structure. Up to 70% were reproduced when considering the five top scoring predictions. The success rate is lower in cross‐docking assays but remains comparable with that of the latest version of AutoDock that accounts for the protein flexibility. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

14.
Structural information about the target–compound complex is invaluable in the early stage of drug discovery. In particular, it is important to know into which part of the initial compound additional interaction sites could be introduced to improve its affinity. Herein, we demonstrate that the affinity of a small‐molecule inhibitor for its target protein could be successfully improved by the constructive introduction of the interaction mode of a competitive peptide. The strategy involved the discrimination of overlapping and non‐overlapping peptide–compound pharmacophores by the use of a ligand‐based NMR spectroscopic approach, INPHARMA. The obtained results enabled the design of a new compound with improved affinity for the platelet receptor glycoprotein VI (GPVI). The approach proposed herein efficiently combines the advantages of compounds and peptides for the development of higher‐affinity druglike ligands.  相似文献   

15.
Protein–ligand docking techniques are one of the essential tools for structure‐based drug design. Two major components of a successful docking program are an efficient search method and an accurate scoring function. In this work, a new docking method called LigDockCSA is developed by using a powerful global optimization technique, conformational space annealing (CSA), and a scoring function that combines the AutoDock energy and the piecewise linear potential (PLP) torsion energy. It is shown that the CSA search method can find lower energy binding poses than the Lamarckian genetic algorithm of AutoDock. However, lower‐energy solutions CSA produced with the AutoDock energy were often less native‐like. The loophole in the AutoDock energy was fixed by adding a torsional energy term, and the CSA search on the refined energy function is shown to improve the docking performance. The performance of LigDockCSA was tested on the Astex diverse set which consists of 85 protein–ligand complexes. LigDockCSA finds the best scoring poses within 2 Å root‐mean‐square deviation (RMSD) from the native structures for 84.7% of the test cases, compared to 81.7% for AutoDock and 80.5% for GOLD. The results improve further to 89.4% by incorporating the conformational entropy. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

16.
Investigation of protein–ligand interactions is crucial during early drug‐discovery processes. ATR‐FTIR spectroscopy can detect label‐free protein–ligand interactions with high spatiotemporal resolution. Here we immobilized, as an example, the heat shock protein HSP90 on an ATR crystal. This protein is an important molecular target for drugs against several diseases including cancer. With our novel approach we investigated a ligand‐induced secondary structural change. Two specific binding modes of 19 drug‐like compounds were analyzed. Different binding modes can lead to different efficacy and specificity of different drugs. In addition, the kobs values of ligand dissociation were obtained. The results were validated by X‐ray crystallography for the structural change and by SPR experiments for the dissociation kinetics, but our method yields all data in a single and simple experiment.  相似文献   

17.
Docking is one of the most commonly used techniques in drug design. It is used for both identifying correct poses of a ligand in the binding site of a protein as well as for the estimation of the strength of protein–ligand interaction. Because millions of compounds must be screened, before a suitable target for biological testing can be identified, all calculations should be done in a reasonable time frame. Thus, all programs currently in use exploit empirically based algorithms, avoiding systematic search of the conformational space. Similarly, the scoring is done using simple equations, which makes it possible to speed up the entire process. Therefore, docking results have to be verified by subsequent in vitro studies. The purpose of our work was to evaluate seven popular docking programs (Surflex, LigandFit, Glide, GOLD, FlexX, eHiTS, and AutoDock) on the extensive dataset composed of 1300 protein–ligands complexes from PDBbind 2007 database, where experimentally measured binding affinity values were also available. We compared independently the ability of proper posing [according to Root mean square deviation (or Root mean square distance) of predicted conformations versus the corresponding native one] and scoring (by calculating the correlation between docking score and ligand binding strength). To our knowledge, it is the first large‐scale docking evaluation that covers both aspects of docking programs, that is, predicting ligand conformation and calculating the strength of its binding. More than 1000 protein–ligand pairs cover a wide range of different protein families and inhibitor classes. Our results clearly showed that the ligand binding conformation could be identified in most cases by using the existing software, yet we still observed the lack of universal scoring function for all types of molecules and protein families. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

18.
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein–ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.  相似文献   

19.
Protein-ligand docking programs have been used to efficiently discover novel ligands for target proteins from large-scale compound databases. However, better scoring methods are needed. Generally, scoring functions are optimized by means of various techniques that affect their fitness for reproducing X-ray structures and protein-ligand binding affinities. However, these scoring functions do not always work well for all target proteins. A scoring function should be optimized for a target protein to enhance enrichment for structure-based virtual screening. To address this problem, we propose the supervised scoring model (SSM), which takes into account the protein-ligand binding process using docked ligand conformations with supervised learning for optimizing scoring functions against a target protein. SSM employs a rough linear correlation between binding free energy and the root mean square deviation of a native ligand for predicting binding energy. We applied SSM to the FlexX scoring function, that is, F-Score, with five different target proteins: thymidine kinase (TK), estrogen receptor (ER), acetylcholine esterase (AChE), phosphodiesterase 5 (PDE5), and peroxisome proliferator-activated receptor gamma (PPARgamma). For these five proteins, SSM always enhanced enrichment better than F-Score, exhibiting superior performance that was particularly remarkable for TK, AChE, and PPARgamma. We also demonstrated that SSM is especially good at enhancing enrichments of the top ranks of screened compounds, which is useful in practical drug screening.  相似文献   

20.
D3R 2016 Grand Challenge 2 focused on predictions of binding modes and affinities for 102 compounds against the farnesoid X receptor (FXR). In this challenge, two distinct methods, a docking-based method and a template-based method, were employed by our team for the binding mode prediction. For the new template-based method, 3D ligand similarities were calculated for each query compound against the ligands in the co-crystal structures of FXR available in Protein Data Bank. The binding mode was predicted based on the co-crystal protein structure containing the ligand with the best ligand similarity score against the query compound. For the FXR dataset, the template-based method achieved a better performance than the docking-based method on the binding mode prediction. For the binding affinity prediction, an in-house knowledge-based scoring function ITScore2 and MM/PBSA approach were employed. Good performance was achieved for MM/PBSA, whereas the performance of ITScore2 was sensitive to ligand composition, e.g. the percentage of carbon atoms in the compounds. The sensitivity to ligand composition could be a clue for the further improvement of our knowledge-based scoring function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号