首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of dibenzyl calcium complex [Ca(Me4TACD)(CH2Ph)2], containing the neutral NNNN‐type macrocyclic ligand Me4TACD (Me4TACD=1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane), with triphenylsilane gave the cationic dinuclear calcium hydride [Ca2H2(Me4TACD)2](PhCHSiPh3)2 which was characterized by NMR spectroscopy and single‐crystal X‐ray diffraction. The cation can be regarded as the ligand‐stabilized dimeric form of hypothetical [CaH]+. Hydrogenolysis of benzyl calcium cation [Ca(Me4TACD)(CH2Ph)(thf)]+ gave dicationic calcium hydrides [Ca2H2(Me4TACD)2][BAr4]2 (Ar=C6H4‐4‐tBu; C6H3‐3,5‐Me2) containing weakly coordinating anions. In THF, they catalyzed the isotope exchange of H2 and D2 to give HD and the hydrogenation of unactivated 1‐alkenes.  相似文献   

2.
The preparation and characterization of a series of neutral rare‐earth metal complexes [Ln(Me3TACD)(η3‐C3H5)2] (Ln=Y, La, Ce, Pr, Nd, Sm) supported by the 1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane anion (Me3TACD?) are reported. Upon treatment of the neutral allyl complexes [Ln(Me3TACD)(η3‐C3H5)2] with Brønsted acids, monocationic allyl complexes [Ln(Me3TACD)(η3‐C3H5)(thf)2][B(C6X5)4] (Ln=La, Ce, Nd, X=H, F) were isolated and characterized. Hydrogenolysis gave the hydride complexes [Ln(Me3TACD)H2]n (Ln=Y, n=3; La, n=4; Sm). X‐ray crystallography showed the lanthanum hydride to be tetranuclear. Reactivity studies of [Ln(Me3TACD)R2]n (R=η3‐C3H5, n=0; R=H, n=3,4) towards furan derivatives includes hydrosilylation and deoxygenation under ring‐opening conditions.  相似文献   

3.
Hydrogenolysis of bis(triphenylsilyl)calcium containing the neutral NNNN‐type macrocyclic amine ligand Me4TACD [Ca(Me4TACD)(SiPh3)2] ( 2 ), gave the cationic dinuclear calcium hydride [Ca2H3(Me4TACD)2](SiPh3) ( 3 ), characterized by NMR spectroscopy, single‐crystal X‐ray analysis, and DFT calculations. Compound 3 reacted with deuterium to give the deuteride [D3]‐ 3 .  相似文献   

4.
The rare‐earth‐metal? hydride complexes [{(1,7‐Me2TACD)LnH}4] (Ln=La 1 a , Y 1 b ; (1,7‐Me2TACD)H2=1,7‐dimethyl‐1,4,7,10‐tetraazacyclododecane, 1,7‐Me2[12]aneN4) were synthesized by hydrogenolysis of [{(1,7‐Me2TACD)Ln(η3‐C3H5)}2] with 1 bar H2. The tetrameric structures were confirmed by 1H NMR spectroscopy and single‐crystal X‐ray diffraction of compound 1 a . Both complexes catalyze the dehydrogenation of secondary amine? borane Me2NH ? BH3 to afford the cyclic dimer (Me2NBH2)2 and (Me2N)2BH under mild conditions. Whilst the complete conversion of Me2NH ? BH3 was observed within 2 h with lanthanum? hydride 1 a , the yttrium homologue 1 b required 48 h to reach 95 % conversion. Further reactions of compound 1 a with Me2NH ? BH3 in various stoichiometric ratios gave a series of intermediate products, [{(1,7‐Me2TACD)LaH}4](Me2NBH2)2 ( 2 a ), [(1,7‐Me2TACDH)La(Me2NBH3)2] ( 3 a ), [(1,7‐Me2TACD)(Me2NBH2)La(Me2NBH3)] ( 4 a ), and [(1,7‐Me2TACD)(Me2NBH2)2La(Me2NBH3)] ( 5 a ). Complexes 2 a , 3 a , and 5 a were isolated and characterized by multinuclear NMR spectroscopy and single‐crystal X‐ray diffraction studies. These intermediates revealed the activation and coordination modes of “Me2NH ? BH3” fragments that were trapped within the coordination sphere of a rare‐earth‐metal center.  相似文献   

5.
Unexpected Reduction of [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2; Cp* = C5Me5) by Reaction with DBU – Molecular Structure of [(DBU)H][Cp*TaCl4] (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2 (Mes); Cp* = C5Me5) react with DBU in an internal redox reaction with formation of [(DBU)H][Cp*TaCl4] ( 1 ) (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) and the corresponding diphosphane (P2H2R2) or decomposition products thereof. 1 was characterised spectroscopically and by crystal structure determination. In the solid state, hydrogen bonding between the (DBU)H cation and one chloro ligand of the anion is observed.  相似文献   

6.
The trapping of a silicon(I) radical with N‐heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6‐i Pr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent‐silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1‐F‐2‐IMe‐C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X‐ray crystallography.  相似文献   

7.
Monomeric manganese(II) complexes of bulky alkyl/ aryl‐substituted phenoxides, [Mn{C6HnRmO}2(DME)] [ 1 : R = C6H5, n = 3, m = 2 (2,6); 2 : R = Me3C, n = 3, m = 2 (2,6); 3 : R = Me3C, n = 2, m = 3 (2,4,6)] were prepared in yields of 37, 44 and 72 %, respectively, from the reaction of manganese powder, Hg(C6F5)2 and the corresponding phenol in the presence of a little mercury in dimethoxyethane (DME). The compounds were characterized spectroscopically and by magnetic measurements. The single crystal structures of 1 and 3 and also of the mixed phenoxide complex [Mn{(C6H3(C6H5)2‐2,6‐O}{C6H3(Me3C)2‐2,6‐O}(DME)] 4 are reported.  相似文献   

8.
To extend organoactinide chemistry beyond uranium, reported here is the first structurally characterized transuranic hydrocarbyl complex, Np[η4‐Me2NC(H)C6H5]3 ( 1 ), from reaction of NpCl4(DME)2 with four equivalents of K[Me2NC(H)C6H5]. Unlike the UIII species, the neptunium analogue can be used to access other NpIII complexes. The reaction of 1 with three equivalents of HE2C(2,6‐Mes2‐C6H3) (E=O, S) yields [(2,6‐Mes2‐C6H3)CE2]3Np(THF)2, maintaining the trivalent oxidation state.  相似文献   

9.
An effective method was developed for the synthesis of three cluster‐based frameworks with multifarious secondary building units (SBUs) and various structures, which were formulated as [Me2NH2]2[Zn10(BTC)63‐O)(μ4‐O)(H2O)5] · 3DMA · 9H2O ( FJI ‐ 3 ), [Me2NH2]2[Zn93‐OH)2(BTC)6(H2O)3] · 5DMA · 6H2O ( FJI ‐ 4 ) and [Me2NH2][Zn33‐OH)(BTC)2DMF] · H2O ( FJI ‐ 5 ) (H3BTC = 1,3,5‐benzenetricarboxylic acid, DMA = N,N′‐dimethyl acetamide and DMF = N,N′‐dimethyl formamide), respectively. X‐ray structural analysis reveals that FJI ‐ 3 displays 3D highly porous metal‐organic framework with four kinds of microporous cages constructed by two paddle‐wheel Zn2(CO2)4, trimeric Zn3O(CO2)6, and tetrameric Zn4O(CO2)6 SBUs. FJI ‐ 4 exhibits 3D microporous MOFs with a dodecahedral cavities built by paddle‐wheel Zn2(CO2)4 and trimeric Zn3O(CO2)6. FJI ‐ 5 shows 3D microporous MOFs with an 1D channel assembled by the Zn3O(CO2)6 SBUs. In addition, the fluorescence and sorption properties in these cluster‐based frameworks were also investigated. Furthermore, the method employed in this work may provide an useful approach to the design and synthesis of novel cluster‐based frameworks.  相似文献   

10.
The trapping of a silicon(I) radical with N-heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6-iPr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent-silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1-F-2-IMe-C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X-ray crystallography.  相似文献   

11.
Several heterometallic nitrido complexes were prepared by reaction of the imido–nitrido titanium complex [{Ti(η5‐C5Me5)(μ‐NH)}33‐N)] ( 1 ) with amido derivatives of Group 13–15 elements. Treatment of 1 with bis(trimethylsilyl)amido [M{N(SiMe3)2}3] derivatives of aluminum, gallium, or indium in toluene at 150–190 °C affords the single‐cube amidoaluminum complex [{(Me3Si)2N}Al{(μ3‐N)23‐NH)Ti35‐C5Me5)33‐N)}] ( 2 ) or the corner‐shared double‐cube compounds [M(μ3‐N)33‐NH)3{Ti35‐C5Me5)33‐N)}2] [M=Ga ( 3 ), In ( 4 )]. Complexes 3 and 4 were also obtained by treatment of 1 with the trialkyl derivatives [M(CH2SiMe3)3] (M=Ga, In) at high temperatures. The analogous reaction of 1 with [{Ga(NMe2)3}2] at 110 °C leads to [{Ga(μ3‐N)23‐NH)Ti35‐C5Me5)33‐N)}2] ( 5 ), in which two [GaTi3N4] cube‐type moieties are linked through a gallium–gallium bond. Complex 1 reacts with one equivalent of germanium, tin, or lead bis(trimethylsilyl)amido derivatives [M{N(SiMe3)2}2] in toluene at room temperature to give cube‐type complexes [M{(μ3‐N)23‐NH)Ti35‐C5Me5)33‐N)}] [M=Ge ( 6 ), Sn ( 7 ), Pb ( 8 )]. Monitoring the reaction of 1 with [Sn{N(SiMe3)2}2] and [Sn(C5H5)2] by NMR spectroscopy allows the identification of intermediates [RSn{(μ3‐N)(μ3‐NH)2Ti35‐C5Me5)33‐N)}] [R=N(SiMe3)2 ( 9 ), C5H5 ( 10 )] in the formation of 7 . Addition of one equivalent of the metalloligand 1 to a solution of lead derivative 8 or the treatment of 1 with a half equivalent of [Pb{N(SiMe3)2}2] afford the corner‐shared double‐cube compound [Pb(μ3‐N)23‐NH)4{Ti35‐C5Me5)33‐N)}2] ( 11 ). Analogous antimony and bismuth derivatives [M(μ3‐N)33‐NH)3{Ti35‐C5Me5)33‐N)}2] [M=Sb ( 12 ), Bi ( 13 )] were obtained through the reaction of 1 with the tris(dimethylamido) reagents [M(NMe2)3]. Treatment of 1 with [AlCl2{N(SiMe3)2}(OEt2)] affords the precipitation of the singular aluminum–titanium square‐pyramidal aggregate [{{(Me3Si)2N}Cl3Al2}(μ3‐N)(μ3‐NH)2{Ti35‐C5Me5)3(μ‐Cl)(μ3‐N)}] ( 14 ). The X‐ray crystal structures of 5 , 11 , 13 , 14 , and [AlCl{N(SiMe3)2}2] were determined.  相似文献   

12.
A new family of Y4/M2 and Y5/M heterobimetallic rare‐earth‐metal/d‐block‐transition‐metal? polyhydride complexes has been synthesized. The reactions of the tetranuclear yttrium? octahydride complex [{Cp′′Y(μ‐H)2}4(thf)4] (Cp′′=C5Me4H, 1‐C5Me4H ) with one equivalent of Group‐6‐metal? pentahydride complexes [Cp*M(PMe3)H5] (M=Mo, W; Cp*=C5Me5) afforded pentanuclear heterobimetallic Y4/M? polyhydride complexes [{(Cp′′Y)4(μ‐H)7}(μ‐H)4MCp*(PMe3)] (M=Mo ( 2 a ), W ( 2 b )). UV irradiation of compounds 2 a , b in THF gave PMe3‐free complexes [{(Cp′′Y)4(μ‐H)6(thf)2}(μ‐H)5MCp*] (M=Mo ( 3 a ), W ( 3 b )). Compounds 3 a , b reacted with one equivalent of [Cp*M(PMe3)H5] to afford hexanuclear Y4/M2 complexes [{Cp*M(μ‐H)5}{(Cp′′Y)4(μ‐H)5}{(μ‐H)4MCp*(PMe3)}] (M=Mo ( 4 a ), W ( 4 b )). UV irradiation of compounds 4 a , b provided the PMe3‐free complexes [(Cp′′Y)4(μ‐H)4{(μ‐H)5MCp*}2] (M=Mo ( 5 a ), W ( 5 b )). C5Me4Et‐ligated analogue [(Cp′′Y)4(μ‐H)4{(μ‐H)5Mo(C5Me4Et)}2] ( 5 a′ ) was obtained from the reaction of 1‐C5Me4H with [(C5Me4Et)Mo(PMe3)H5]. On the other hand, the reaction of pentanuclear yttrium? decahydride complex [{(C5Me4R)Y(μ‐H)2}5(thf)2] ( 1‐C5Me5 : R=Me; 1‐C5Me4Et : R=Et) with [Cp*M(PMe3)H5] gave the hexanuclear heterobimetallic Y5/M? polyhydride complexes [({(C5Me4R)Y}5(μ‐H)8)(μ‐H)5MCp*] ( 6 a : M=Mo, R=Me; 6 a′ : M=Mo, R=Et; 6 b : M=W, R=Me). Compound 5 a released two molecules of H2 under vacuum to give [(Cp′′Y)4(μ‐H)2{(μ‐H)4MoCp*}2] ( 7 ). In contrast, compound 6 a lost one molecule of H2 under vacuum to yield [{(Cp*Y)5(μ‐H)7}(μ‐H)4MoCp*] ( 8 ). Both compounds 7 and 8 readily reacted with H2 to regenerate compounds 5 a and 6 a , respectively. The structures of compounds 4 a , 5 a′ , 6 a′ , 7 , and 8 were determined by single‐crystal X‐ray diffraction.  相似文献   

13.
Imine complexes [IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}{P(OR)3}]BPh4 ( 1 , 2 ) (Ar = C6H5, 4‐CH3C6H4; R = Me, Et) were prepared by allowing chloro complexes [IrCl25‐C5Me5){P(OR)3}] to react with benzyl azides ArCH2N3. Bis(imine) complexes [Ir(η5‐C5Me5){κ1‐NH=C(H)Ar}2{P(OR)3}](BPh4)2 ( 3 , 4 ) were also prepared by reacting [IrCl25‐C5Me5){P(OR)3}] first with AgOTf and then with benzyl azide. Depending on the experimental conditions, treatment of the dinuclear complex [IrCl25‐C5Me5)]2 with benzyl azide yielded mono‐ [IrCl25‐C5Me5){κ1‐NH=C(H)Ar}] ( 5 ) and bis‐[IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}2]BPh4 ( 6 ) imine derivatives. In contrast, treatment of chloro complexes [IrCl25‐C5Me5){P(OR)3}] with phenyl azide C6H5N3 gave amine derivatives [IrCl(η5‐C5Me5)(C6H5NH2){P(OR)3}]BPh4 ( 7 , 8 ). The complexes were characterized spectroscopically (IR, NMR) and by X‐ray crystal structure determination of [IrCl(η5‐C5Me5){κ1‐NH=C(H)C6H4‐4‐CH3}{P(OEt)3}]BPh4 ( 2b ).  相似文献   

14.
A series of polychalcogenotrimethylsilane complexes Ar(CH2ESiMe3)n, (Ar=aryl; E=S, Se; n=2, 3, and 4) can be prepared from the corresponding polyorganobromide and M[ESiMe3] (M=Na, Li). These represent the first examples of the incorporation of such a large number of reactive ?ESiMe3 moieties onto an organic molecular framework. They are shown to be convenient reagents for the preparation of the polyferrocenylseleno‐ and thioesters from ferrocenoyl chloride. The synthesis, structures, and spectroscopic properties of the new silyl chalcogen complexes 1,4‐(Me3SiECH2)2(C6Me4) (E=S, 1 ; E=Se, 2 ), 1,3,5‐(Me3SiECH2)3(C6Me3) (E=S, 3 ; E=Se, 4 ) and 1,2,4,5‐(Me3SiECH2)4(C6H2) (E=S, 5 ; E=Se, 6 ) and the polyferrocenyl chalcogenoesters [1,4‐{FcC(O)ECH2}2(C6Me4)] (E=S, 7 ; E=Se, 8 ), [1,3,5‐{FcC(O)ECH2}3(C6Me3)] (E=S, 9 ; E=Se, 10 ) and [1,2,4,5‐{FcC(O)ECH2}4(C6H2)] (E=S, 11 illustrated; E=Se, 12 ) are reported. The new polysilylated reagents and polyferrocenyl chalcogenoesters have been characterized by multinuclear NMR spectroscopy (1H, 13C, 77Se), electrospray ionization mass spectrometry and, for complexes 1 , 2 , 3 , 4 , 7 , 8 , and 11 , single‐crystal X‐ray diffraction. The cyclic voltammograms of complexes 7 – 11 are presented.  相似文献   

15.
Protonation of the closely related salts [N(PPh3)2][W(CC6H4Me-4)(CO)2(η-1,2-C2B9H9R2] (Ia, R = H; Ib, R = Me) affords structurally different products: [N(PPh3)2][W2(μ-H){μ-C2(C6H4Me-4)2}(CO)4(η-1,2-C2B9H11)2] (III) and [W(CC6H4Me-4)(CO)2(η-1,2-C2B9H10Me2)] (V), respectively. Treatment of Ib, with PMe3, gives the ketenyl complex [N(PPh3)2][W(CO)(PMe3){η2-C(C6H4Me-4)C(O)}(η-1,2-C2B9H9Me2)] (VI). Protonation and methylation of the latter yields the alkyne-tungsten compounds [W(CO)(PMe3){η-C2(OR′)(C6H4Me-4)}(η-1,2-C2B9H9Me2)] (IXa, R′ = H; IXb, R′ = Me).  相似文献   

16.
Attempts have been made to prepare salts with the labile tris(trimethylsilyl)chalconium ions, [(Me3Si)3E]+ (E=O, S), by reacting [Me3Si-H-SiMe3][B(C6F5)4] and Me3Si[CB] (CB=carborate=[CHB11H5Cl6], [CHB11Cl11]) with Me3Si-E-SiMe3. In the reaction of Me3Si-O-SiMe3 with [Me3Si-H-SiMe3][B(C6F5)4], a ligand exchange was observed in the [Me3Si-H-SiMe3]+ cation leading to the surprising formation of the persilylated [(Me3Si)2(Me2(H)Si)O]+ oxonium ion in a formal [Me2(H)Si]+ instead of the desired [Me3Si]+ transfer reaction. In contrast, the expected homoleptic persilylated [(Me3Si)3S]+ ion was formed and isolated as [B(C6F5)4] and [CB] salt, when Me3Si-S-SiMe3 was treated with either [Me3Si-H-SiMe3][B(C6F5)4] or Me3Si[CB]. However, the addition of Me3Si[CB] to Me3Si-O-SiMe3 unexpectedly led to the release of Me4Si with simultaneous formation of a cyclic dioxonium dication of the type [Me3Si-μO-SiMe2]2[CB]2 in an anion-mediated reaction. DFT studies on structure, bonding and thermodynamics of the [(Me3Si)3E]+ and [(Me3Si)2(Me2(H)Si)E]+ ion formation are presented as well as mechanistic investigations on the template-driven transformation of the [(Me3Si)3E]+ ion into a cyclic dichalconium dication [Me3Si-μE-SiMe2]22+.  相似文献   

17.
Photochemical Reactions of Cyclopentadienylbis(ethene)rhodium with Benzene Derivatives During UV irradiation of [CpRh(C2H4)2] ( 1 ) (Cp = η5‐C5H5) in hexane in the presence of hexamethylbenzene the di‐ and trinuclear arene bridged complexes [(CpRh)2(μ‐η3 : η3‐C6Me6)] ( 3 ) and [(CpRh)33‐η2 : η2 : η2‐C6Me6)] ( 4 ) are formed besides known [CpRh(η4‐C6Me6)] ( 2 ). It was shown by a separate experiment that 3 besides small amounts of 4 is formed by attack of photochemically from 1 arising CpRh fragments at the free double bond of the η4‐bonded benzene ring in 2 . Irradiation of 1 in the presence of diphenyl (C12H10) affords the compounds [(CpRh)2(μ‐η3 : η3‐C12H10)] ( 5 ) and [(CpRh)33‐η2 : η2 : η2‐C12H10)] ( 6 ) as analogues of 3 and 4 , in the presence of triptycene (C20H14) only [(CpRh)2(μ‐η3 : η3‐C20H14)] ( 7 ) is obtained; the bridging in 5 , 6 , and 7 always occurs via the same six‐membered ring of the corresponding ligand system. During the photochemical reaction of 1 in the presence of styrene (C8H8) substitution of the ethene ligands by the vinyl groups with formation of [CpRh(C2H4)(η2‐C8H8)] ( 8 ) and known [CpRh(η2‐C8H8)2] ( 9 ) is observed exclusively. The new complexes were characterized analytically and spectroscopically, in the case of 3 also by X‐ray structure analysis.  相似文献   

18.
Abstract

Organochalcogenolate-bridged cyclometalated palladium(II) complexes of the formulae, [Pd2(μ-Epy)2(Me2NCH2C6H4-C,N)2] (2) (E = S (2a), Se (2b)), [Pd2(μ-SAr)(μ-Cl)(Me2NCH2C6H4-C,N)2] (3) (Ar = Ph (3a), Mes (Mes = 2,4,6-Me3C6H2) (3b)) and [Pd2(μ-SeAr)2(Me2NCH2C6H4-C,N)2] (4) (Ar = Ph (4a), Mes (4b)), have been synthesized by the reactions of [Pd2(μ-Cl)2(Me2NCH2C6H4-C,N)2] with lead or sodium salts of the chalcogenolate ligand. These complexes have been characterized by elemental analysis, mass spectral data, and NMR (1H and 77Se{1H}) spectroscopy. The molecular structure of 2, determined by single crystal X-ray diffraction analysis, revealed a Epy-bridged head-to-tail arrangement in which the eight-membered “(PdECN)2” ring adopts a distorted twist boat conformation. The Pd····Pd separation in 2a is within the van-der-Waals interaction but in 2b it is too large to support the presence of any metal–metal interaction. The thermal behavior of these complexes has been studied by thermogravimetric analysis.  相似文献   

19.
A complex featuring a terminal magnesium hydride bond supported by an NNNN macrocyclic ligand, [Mg{Me3TACD ? Al(iBu)3}H] ( 3 ), was formed from its labile Al(iBu)3 adduct. Use of Al(iBu)3 to block the amido nitrogen of the NNNN macrocyclic ligand was essential to prevent aggregation. The structurally characterized compound 3 reacted with BH3 to give the BH4 derivative, whereas Me3SiC?CH and PhSiH3 led to the corresponding acetylide and silyl derivative under H2 elimination. Pyridine is inserted into the Mg?H bond to give selectively the 1,4‐dihydropyridinate.  相似文献   

20.
The reaction of equimolar amounts of YC13 and [1,8-C10H6(NSiMe3)2]Li2 in THF produced the complex {[1,8-C10H6(NSiMe3)2YCl(DME)]2(μ-Cl)}[Li(DME)3] (1), which was isolated by recrystallization from a DME—hexane mixture as yellow crystals in 82% yield. The reaction of complex 1 with (Me3Si)2NLi(Et20) (in a molar ratio of 1:2) in toluene gave the corresponding amide derivative [1,8-C10H6(NSiMe3)2YN(SiMe3)2(μ-Cl)]2[Li(DME)3]2 (2). The recrystallization of the reaction product from toluene afforded complex 2 in 73% yield. The X-ray diffraction study showed that in the crystalline state, compounds 1 and 2 consist of the isolated cationic and anionic moieties. The complex anions are dinuclear moieties with the bridging chlorine ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号