首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Michael S. Wrigley 《合成通讯》2017,47(19):1771-1776
B(C6F5)3 was found to catalyze the reaction between trimethylsilyl azide and benzylic acetates. Secondary and tertiary benzylic acetates were competent substrates in this reaction providing the azide products in moderate to high yields. Mechanistic experiments are consistent with the possible formation of a Lewis acid-base pair between the B(C6F5)3 and trimethylsilyl azide.  相似文献   

3.
A metal-free 1,4-allylation of azadienes with allyltrimethylsilanes catalyzed by B(C6F5)3 has been developed. The high Lewis acidity, good thermal stability, and good hydrolytic stability of the catalyst make this reaction efficient and operationally simple. In contrast to the previously reported 1,2-allylation of α,β-unsaturated imines, the 1,4-allylation of azadienes is described here for the first time. Benzofuran-, indene-, dihydronaphthalene-, chromene-, and benzothiophene-based allyl arylmethanes have been obtained in up to 95 % yield.  相似文献   

4.
5.
A transition‐metal‐free transfer hydrogenation of 1,1‐disubstituted alkenes with cyclohexa‐1,4‐dienes as the formal source of dihydrogen is reported. The process is initiated by B(C6F5)3‐mediated hydride abstraction from the dihydrogen surrogate, forming a Brønsted acidic Wheland complex and [HB(C6F5)3]?. A sequence of proton and hydride transfers onto the alkene substrate then yields the alkane. Although several carbenium ion intermediates are involved, competing reaction channels, such as dihydrogen release and cationic dimerization of reactants, are largely suppressed by the use of a cyclohexa‐1,4‐diene with methyl groups at the C1 and C5 as well as at the C3 position, the site of hydride abstraction. The alkene concentration is another crucial factor. The various reaction pathways were computationally analyzed, leading to a mechanistic picture that is in full agreement with the experimental observations.  相似文献   

6.
一直以来寻找直接有效的乙烯基官能化合成方法的研究备受关注. 报道了一种新型的有机胺盐酸盐/B(C6F5)3 (BCF)体系催化炔烃与氢氯酸或羧酸的加成反应方法, 可选择性地在炔烃的C(2)位氯代或羧化. 研究了在有机胺盐酸盐/BCF体系催化下, 不同取代的炔烃与无机酸HCl的氢氯化加成反应. 在2,2,4,4-四甲基哌啶盐酸盐/BCF([TMPH]+[Cl-B(C6F5)3]-)催化下, 等物质的量的炔烃和HCl反应时, 端基芳炔的C(2)位一加成产物的比例可高达90%以上, 而端基烷基炔烃的选择性较芳炔差, 叔丁基乙炔的一加成产物只占到67%. 报道了非金属催化剂路易斯酸BCF催化的炔烃与羧酸CF3COOH的烯醇酯化反应, 端基芳炔的C(2)位烯醇酯化产率可达95%以上, 而二苯基乙炔及非芳香性端基炔的反应活性较低. 首次实现了非金属催化剂FLPs参与催化的炔烃与酸的选择性氢氯化和烯醇酯化加成反应.  相似文献   

7.
The strong boron Lewis acid tris(pentafluorophenyl)borane, B(C6F5)3, is shown to abstract a hydride from suitably donor‐substituted cyclohexa‐1,4‐dienes, eventually releasing dihydrogen. This process is coupled with the FLP‐type (FLP=frustrated Lewis pair) hydrogenation of imines and nitrogen‐containing heteroarenes that are catalyzed by the same Lewis acid. The net reaction is a B(C6F5)3‐catalyzed, i.e., transition‐metal‐free, transfer hydrogenation using easy‐to‐access cyclohexa‐1,4‐dienes as reducing agents. Competing reaction pathways with or without the involvement of free dihydrogen are discussed.  相似文献   

8.
9.
The organocatalytic enantioselective conjugate addition of secondary β‐ketoamides to α,β‐unsaturated carbonyl compounds is reported. Use of bifunctional Takemoto’s thiourea catalyst allows enantiocontrol of the reaction leading either to simple Michael adducts or spirocyclic aminals in up to 99 % ee. The origin of the enantioselectivity has been rationalised based on combined DFT calculations and kinetic analysis. This study provides a deeper understanding of the reaction mechanism, which involves a predominant role of the secondary amide proton, and clarifies the complex interactions occurring between substrates and the catalyst.  相似文献   

10.
The hydrogenation of oximes and oxime ethers is usually hampered by N? O bond cleavage, hence affording amines rather than hydroxylamines. The boron Lewis acid B(C6F5)3 is found to catalyze the chemoselective hydrogenation of oxime ethers at elevated or even room temperature under 100 bar dihydrogen pressure. The use of the triisopropylsilyl group as a protecting group allows for facile liberation of the free hydroxylamines.  相似文献   

11.
A novel and convenient one‐pot route for the synthesis of 3‐benzyl‐2‐phenylquinolin‐4(1 H)‐ones has been developed under transition‐metal‐free conditions. This new strategy features high yield and good functional group tolerance. In addition, a proposed mechanism has been confirmed for this reaction.  相似文献   

12.
13.
Designing superacids: A computational study of protonated boratabenzenes and the gas‐phase acidity of their conjugate acids is presented. Conjugate acids of boratabenzenes substituted with CN or CF3 groups (see figure) are highly acidic species; the protonated hexacyanoboratabenzene and hexakis(trifluoromethyl)boratabenzene have computational gas‐phase acidities of 250.5 and 276.8 kcal mol?1, respectively.

  相似文献   


14.
Lewis acid–base pair chemistry has been placed on a new level with the discovery that adduct formation between an electron donor (Lewis base) and acceptor (Lewis acid) can be inhibited by the introduction of steric demand, thus preserving the reactivity of both Lewis centers, resulting in highly unusual chemistry. Some of these highly versatile frustrated Lewis pairs (FLP) are capable of splitting a variety of small molecules, such as dihydrogen, in a heterolytic and even catalytic manner. This is in sharp contrast to classical reactions where the inert substrate must be activated by a metal-based catalyst. Very recently, research has emerged combining the two concepts, namely the formation of FLPs in which a metal compound represents the Lewis base, allowing for novel chemistry by using the heterolytic splitting power of both together with the redox reactivity of the metal. Such reactivity is not restricted to the metal center itself being a Lewis acid or base, also ancillary ligands can be used as part of the Lewis pair, still with the benefit of the redox-active metal center nearby. This Minireview is designed to highlight the novel reactions arising from the combination of metal oxido transition-metal or rare-earth-metal compounds with the Lewis acid B(C6F5)3. It covers a wide area of chemistry including small molecule activation, hydrogenation and hydrosilylation catalysis, and olefin metathesis, substantiating the broad influence of the novel concept. Future goals of this young and exciting area are briefly discussed.  相似文献   

15.
The B(C6F5)3‐catalyzed hydrogenation is applied to aldoxime triisopropylsilyl ethers and hydrazones bearing an easily removable phthaloyl protective group. The C?N reduction of aldehyde‐derived substrates (oxime ethers and hydrazones) is enabled by using 1,4‐dioxane as the solvent known to participate as the Lewis‐basic component in FLP‐type heterolytic dihydrogen splitting. More basic ketone‐derived hydrazones act as Lewis bases themselves in the FLP‐type dihydrogen activation and are therefore successfully hydrogenated in nondonating toluene. The difference in reactivity between aldehyde‐ and ketone‐derived substrates is also reflected in the required catalyst loading and dihydrogen pressure.  相似文献   

16.
The catalytic enantioselective synthesis of boronate‐substituted tertiary alcohols through additions of diborylmethane and substituted 1,1‐diborylalkanes to α‐ketoesters is reported. The reactions are catalyzed by readily available chiral phosphine/copper(I) complexes and produce β‐hydroxyboronates containing up to two contiguous stereogenic centers in up to 99:1 e.r. and greater than 20:1 d.r. The utility of the organoboron products is demonstrated through several chemoselective functionalizations. Evidence indicates the reactions occur via an enantioenriched α‐boryl‐copper‐alkyl intermediate.  相似文献   

17.
18.
19.
20.
Several typical 13C‐NMR displacements (of C?O, C(α), C(β), and Cipso), as well as conformational or energy properties (S? N? C?O dihedral angle, ΔE syn/anti; HOMO/LUMO) could be correlated with the electronic parameters of p‐substituted N‐cinnamoylbornane‐10,2‐sultams 2 . Even under nonchelating conditions, the pyramidalization of the sultam N‐atom decreases for electron‐attracting p‐substituents, inducing a modification of the sultam‐ring puckering. Detailed comparison of the X‐ray structure analyses of 2b, 2d , and 2m showed that the orientation of the sterically directing pseudo‐axial S?O(2) and H? C(2) is modified and precludes any conclusion about the π‐facial stereoelectronic influence of the N lone pair on the alkyl Grignard 1,4‐addition. We also showed that the aggregating alkyl Grignard reagent may be used in equimolar fashion, demonstrating that the sultam moiety is chelated with a Lewis acid such as MgBr2. The Schlenk equilibrium may also be used to generate the appropriate conditions of effective 1,4‐diastereoselectivity. Although the anti‐s‐cis/syn‐s‐cis difference of conformational energies for N‐cinnamoyl derivatives 2 is higher than for the simple N‐crotonoyl analogue, an X‐ray structure analysis of the SO2/C?O syn derivative 10 confirms the predictive validity of our conformational calculations for ΔE≤1.8 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号