首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new molecular boxes, the mono-bromo box [Au6(Triphos)4Br](SbF6)5⋅6(CH2Cl2), 4 mB , and the dibromo box, [Au6(Triphos)4Br2⋅H2O](SbF6)4⋅4(CH2Cl2), 5 dB , have been prepared in crystalline form. Although constructed from non-luminescent components, both are strongly luminescent. Like its chloro counterpart, the mono-bromo box [Au6(Triphos)4Br](SbF6)5⋅6(CH2Cl2), 4 mB , is mechanochromic. Under grinding, it loses its luminescence. The bromo-bridged helicate, [(μ-Br){Au3(Triphos)2}2](CF3SO3)5⋅2(CH2Cl2), 3μ-H , with a cation that is isomeric with the box [Au6(Triphos)4Br]5+, has also been prepared and crystallographically characterized. Unlike its chloro analogue, [(μ-Br){Au3(Triphos)2}2](CF3SO3)5⋅2(CH2Cl2) is not luminescent. Thus, the cation produced upon grinding may be the cation present in the bromo-bridged helicate, [(μ-Br){Au3(Triphos)2}2](CF3SO3)5⋅2(CH2Cl2), 3μ-H . The dibromo box, [Au6(Triphos)4Br2⋅H2O](SbF6)4⋅4(CH2Cl2), 5 dB , is not significantly mechanochromic.  相似文献   

2.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

3.
Six adducts of B(C6F5)3 and archetypical alcoholates and carboxylates, were prepared and isolated as crystalline sodium crown ether salts, [Na(15‐crown‐5)][CH3O · B(C6F5)3] ( 1 ), [Na(15‐crown‐5)][CH3CH2O · B(C6F5)3] ( 2 ), [Na(15‐crown‐5)][HCO2 · B(C6F5)3] ( 3 ), [Na(15‐crown‐5)][(H3CCO2 · B(C6F5)3] ( 4 ), [Na(15‐crown‐5)][(F3CCO2 · B(C6F5)3] ( 5 ), and [Na2(15‐crown‐5)3][C2O4 · 2 B(C6F5)3] ( 6 ). All compounds were fully characterized by multinuclear NMR‐ and IR spectroscopy, ESI MS spectrometry, and X‐ray crystallography.  相似文献   

4.
Three new dialkytin complexes, {[o-OH–C6H4(O)C=N–N=C(CH2Ph)COO](n-Bu2Sn)}n (1), {[o-OH–C6H4(O)C=N–N=C(CH2Ph)COO](MeOH)(p-MeC6H5CH2)2Sn}2 (2), and {[o-OH–C6H4(O)C=N–N=C(CH2Ph)COO](EtOH)(C6H5CH2)2Sn}2 (3), were synthesized by reactions of 2-oxo-3-phenylpropionic acid salicyloylhydrazone with the corresponding diorganotin(IV) complex, respectively. All the complexes were characterized by IR, 1H, 13C, 119Sn NMR spectra, elemental analysis, X-ray single crystal diffraction and TGA. For in vitro antitumor activities, complexes were evaluated by the MTT assay against three human cancer cell lines (NCI-H460, HepG2 and MCF7) and human cell line (HL7702). The results showed that 1 may be a better potential candidate for further chemical optimization and cancer therapy than 2 and 3. The interactions between the complexes and calf thymus DNA were studied; the interaction of 1 with calf thymus DNA was intercalation, 2 and 3 were intercalation and electrostatic binding.  相似文献   

5.
In contrast to ruthenocene [Ru(η5‐C5H5)2] and dimethylruthenocene [Ru(η5‐C5H4Me)2] ( 7 ), chemical oxidation of highly strained, ring‐tilted [2]ruthenocenophane [Ru(η5‐C5H4)2(CH2)2] ( 5 ) and slightly strained [3]ruthenocenophane [Ru(η5‐C5H4)2(CH2)3] ( 6 ) with cationic oxidants containing the non‐coordinating [B(C6F5)4]? anion was found to afford stable and isolable metal?metal bonded dicationic dimer salts [Ru(η5‐C5H4)2(CH2)2]2[B(C6F5)4]2 ( 8 ) and [Ru(η5‐C5H4)2(CH2)3]2[B(C6F5)4]2 ( 17 ), respectively. Cyclic voltammetry and DFT studies indicated that the oxidation potential, propensity for dimerization, and strength of the resulting Ru?Ru bond is strongly dependent on the degree of tilt present in 5 and 6 and thereby degree of exposure of the Ru center. Cleavage of the Ru?Ru bond in 8 was achieved through reaction with the radical source [(CH3)2NC(S)S?SC(S)N(CH3)2] (thiram), affording unusual dimer [(CH3)2NCS2Ru(η5‐C5H4)(η3‐C5H4)C2H4]2[B(C6F5)4]2 ( 9 ) through a haptotropic η5–η3 ring‐slippage followed by an apparent [2+2] cyclodimerization of the cyclopentadienyl ligand. Analogs of possible intermediates in the reaction pathway [C6H5ERu(η5‐C5H4)2C2H4][B(C6F5)4] [E=S ( 15 ) or Se ( 16 )] were synthesized through reaction of 8 with C6H5E?EC6H5 (E=S or Se).  相似文献   

6.
Bromonium salts [(RF)2Br]Y with perfluorinated groups RFC6F5, CF3CFCF, C2F5CFCF, and CF3C≡C were isolated from reactions of BrF3 with RFBF2 in weakly coordinating solvents (wcs) like CF3CH2CHF2 (PFP) or CF3CH2CF2CH3 (PFB) in 30-90% yields. C6F5BF2 formed independent of the stoichiometry only [(C6F5)2Br][BF4]. 1:2 reactions of BrF3 and silanes C6F5SiY3 (Y = F, Me) ended with different products - C6F5BrF2 or [(C6F5)2Br][SiF5] - as pure individuals, depending on Y and on the reaction temperature (Y = F). With C6F5SiF3 at ≥−30 °C [(C6F5)2Br][SiF5] resulted in 92% yield whereas the reaction with less Lewis acidic C6F5SiMe3 only led to C6F5BrF2 (58%). The interaction of K[C6F5BF3] with BrF3 or [BrF2][SbF6] in anhydrous HF gave [(C6F5)2Br][SbF6]. Attempts to obtain a bis(perfluoroalkyl)bromonium salt by reactions of C6F13BF2 with BrF3 or of K[C6F13BF3] with [BrF2][SbF6] failed. The 3:2 reactions of BrF3 with (C6F5)3B in CH2Cl2 gave [(C6F5)2Br][(C6F5)nBF4−n] salts (n = 0-3). The mixture of anions could be converted to pure [BF4] salts by treatment with BF3·base.  相似文献   

7.
Double chloride abstraction of Cp*AsCl2 gives the dicationic arsenic species [(η5‐Cp*)As(tol)][B(C6F5)4]2 ( 2 ) (tol=toluene). This species is shown to exhibit Lewis super acidity by the Gutmann–Beckett test and by fluoride abstraction from [NBu4][SbF6]. Species 2 participates in the FLP activation of THF affording [(η2‐Cp*)AsO(CH2)4(THF)][B(C6F5)4]2 ( 5 ). The reaction of 2 with PMe3 or dppe generates [(Me3P)2As][B(C6F5)4] ( 6 ) and [(σ‐Cp*)PMe3][B(C6F5)4] ( 7 ), or [(dppe)As][B(C6F5)4] ( 8 ) and [(dppe)(σ‐Cp*)2][B(C6F5)4]2 ( 9 ), respectively, through a facile cleavage of C?As bonds, thus showcasing unusual reactivity of this unique As‐containing compound.  相似文献   

8.
The reaction of (C6F5)2BH ( 1 ) with N,N‐dimethylallylamine ( 2 ), N,N‐diethylallylamine ( 3 ) and 1‐allylpiperidine ( 4 ) afforded the five‐membered ring systems (C6F5)2B(CH2)3NR2 (R=Me ( 5 ), Et ( 6 )) and (C6F5)2B(CH2)3N(CH2)5 ( 7 ) with an intramolecular dative B? N bond. A different product was obtained from the reaction of (C6F5)2BH ( 1 ) with N,N‐diisopropylallylamine ( 8 ), which afforded the seven‐membered ring system (C6F5)2B(CH2)3N(iPr)CH(Me)CH2 ( 9 ) under extrusion of dihydrogen. All compounds were characterised by elemental analysis, NMR spectroscopy and single‐crystal X‐ray diffraction experiments. Density functional theory (DFT) studies were performed to rationalise the different reaction mechanism for the formation of products 6 and 9 . The bonding situation of compound 9 was analysed in terms of its electron density topology to describe the delocalised nature of a borane– enamine adduct.  相似文献   

9.
Alkyl(aryl)diaminofluorophosphonium Salts . Alkyl(aryl)diaminodifluoro phosphoranes react with BF3 · O(C2H5)2 or [(C2H5)3O]BF4 to yield alkyl(aryl)diaminofluorophosphonium tetrafluoroborates. t-Butyl-bis(methylamino)-difluorophosphorane forms with C6H5PCl2 or PCl3 [t-C4H9PF(NHCH3)2]Cl, phenylbis(diethylamino)-difluorophosphorane with SbF5 {C6H5PF[N(C2H5)2]2}SbF6. {CH3PF[N(CH3)2]2}Cl is the product of the reaction between methylene bis(dimethylamino)fluorophosphorane and trimethylchlorosilane. The new compounds are characterized by their NMR and vibration spectra.  相似文献   

10.
The phosphine tBu2PC?CH ( 1 ) was reacted with B(C6F5) to give the zwitterionic species tBu2P(H)C?CB(C6F5)3 ( 2 ). The analogous species tBu2P(Me)C?CB(C6F5)3 ( 3 ), tBu2P(H)C?CB(Cl)(C6F5)2 ( 4 ), tBu2P(H)C?CB(H)(C6F5)2 ( 5 ), and tBu2P(Me)C?CB(H)(C6F5) 2 ( 6 ) were also prepared. The salt [tBu2P(H)C?CB(C6F5)2(THF)][B(C6F5)4] ( 7 ) was prepared through abstraction of hydride by [Ph3C][B(C6F5)4]. Species 5 reacted with the imine tBuN?CHPh to give the borane–amine adduct tBu2PC?CB[tBuN(H)CH2Ph](C6F5)2 ( 8 ). The related phosphine Mes2PC?CH ( 9 ; Mes=C6H2Me3) was used to prepare [tBu3PH][Mes2PC?CB(C6F5)3] ( 10 ) and generate Mes2PC?CB(C6F5)2. The adduct Mes2PC?CB(NCMe)(C6F5)2 ( 11 ) was isolated. Reaction of Mes2PC?CB(C6F5)2 with H2 gave the zwitterionic product (C6F5)2(H)BC(H)?C[P(H)Mes2][(C6F5)2BC?CP(H)Mes2] ( 12 ). Reaction of tBu2PC?CB(C6F5)2, a phosphine–borane generated in situ from 5 , with 1‐hexene gave the species [tBu2PC?CB(C6F5)2](CH2CHnBu)[tBu2PC?CB(C6F5)2] ( 13 ) and subsequent reaction with methanol or hexene resulted in the formation of [tBu2P(H)C?CB(C6F5)2](CH2CHnBu)[tBu2PC?CB(C6F5)2](OMe) ( 14 ) or the macrocycle {[tBu2PC?CB(C6F5)2](CH2CH2nBu)}2 ( 15 ), respectively. In a related fashion, the reaction of 13 with THF afforded the macrocycle [tBu2PC?CB(C6F5)2](CH2CHnBu)[tBu2PC?CB(C6F5)2][O(CH2)4] ( 16 ), although treatment of tBu2PC?CB(C6F5)2 with THF lead to the formation of {[tBu2PC?CB(C6F5)2][O(CH2)4]}2 ( 17 ). In a related example, the reaction of Mes2PC?CB(C6F5)2 with PhC?CH gave {[Mes2PC?CB(C6F5)2](CH?CPh)}2 ( 18 ). Compound 5 reacted with AlX3 (X=Cl, Br) to give addition to the alkynyl unit, affording (C6F5)2BC(H)?C[P(H)tBu2](AlX3) (X=Cl 19 , Br 20 ). In a similar fashion, 5 reacted with [Zn(C6F5)2] ? C7H8, [Al(C6F5)3] ? C7H8, or HB(C6F5)2 to give (C6F5)3BC(H)?C[P(H)tBu2][Zn(C6F5)] ( 21 ), (C6F5)3BC(H)?C[P(H)tBu2][Al(C6F5)2] ( 22 ), or [(C6F5)2B]2HC?CH[P(H)tBu2] ( 23 ), respectively. The implications of this reactivity are discussed.  相似文献   

11.
Nitriles react with PF5 and also with AsF5, SbF5 forming 1:1-adducts. Using C2Cl3F3 as a solvent is of advantage for this reaction. PF5·CH3CN and [N(C2H5)4]SH give [N(C2H5)4][P2S2F8] with a sulfur double bridge and hexafluorophosphate in acetonitrile [1]. In case of AsF5·CH3CN a salt with the anion [AsF5NHCSCH3]? has been isolated [2]. Following products have been confirmed in a reaction mixture of PF5·CH3CN and SH? in acetonitrile by NMR (31P and 19F): [PF6]?, [F5PSPF5]2?,
, F4PSH, F3PS, HPS2F2, [PS2F2]?, [F5PNC(SH)CH3]?, [F5PNHCSCH3]?, [F5PSH]?. With a ratio PF5·CH3CN: SH? = 2:1 the S-bridge-complexes are prefered whereas in case of a ratio 1:1 the non-bridged P-complexes are the main products.  相似文献   

12.
Reaction of [Au(C6F5)(tht)2Cl](OTf) with RaaiR′ in CH2Cl2 medium leads to [Au(C6F5)(RaaiR′)Cl](OTf) [RaaiR′ = p-R–C6H4–N=N–C3H2–NN-1-R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The maximum molecular peak of [Au(C6F5)(MeaaiMe)Cl] is observed at m/z 599.51 (100 %) in the FAB mass spectrum. Ir spectra of the complexes show –C=N– and –N=N– stretching near at 1590 and 1370 cm−1 and near at 1510, 955, 800 cm−1 due to the presence of pentafluorophenyl ring. The 1H-NMR spectral measurements suggest methylene, –CH2–, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph shows AB type quartets. 13C-NMR spectrum of complexes confirm the molecular skeleton. In the 1H-1H-COSY spectrum as well as contour peaks in the 1H-13C HMQC spectrum for the present complexes, assign the solution structure and stereoretentive conformation. The electrochemistry gives the ligand reduction peaks.  相似文献   

13.
A series of rare‐earth‐metal–hydrocarbyl complexes bearing N‐type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH2SiMe3)3(thf)2] with equimolar amount of the electron‐donating aminophenyl‐Cp ligand C5Me4H‐C6H4o‐NMe2 afforded the corresponding binuclear monoalkyl complex [({C5Me4‐C6H4o‐NMe(μ‐CH2)}Y{CH2SiMe3})2] ( 1 a ) via alkyl abstraction and C? H activation of the NMe2 group. The lutetium bis(allyl) complex [(C5Me4‐C6H4o‐NMe2)Lu(η3‐C3H5)2] ( 2 b ), which contained an electron‐donating aminophenyl‐Cp ligand, was isolated from the sequential metathesis reactions of LuCl3 with (C5Me4‐C6H4o‐NMe2)Li (1 equiv) and C3H5MgCl (2 equiv). Following a similar procedure, the yttrium‐ and scandium–bis(allyl) complexes, [(C5Me4‐C5H4N)Ln(η3‐C3H5)2] (Ln=Y ( 3 a ), Sc ( 3 b )), which also contained electron‐withdrawing pyridyl‐Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl‐Flu ligand (C13H9‐C5H4N) by [Ln(CH2SiMe3)3(thf)2] generated the rare‐earth‐metal–dialkyl complexes, [(η3‐C13H8‐C5H4N)Ln(CH2SiMe3)2(thf)] (Ln=Y ( 4 a ), Sc ( 4 b ), Lu ( 4 c )), in which an unusual asymmetric η3‐allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium–trisalkyl complex [Y(CH2C6H4o‐NMe2)3], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η3‐C13H8‐C5H4N)Y(CH2C6H4o‐NMe2)2] ( 5 ). Complexes 1 – 5 were fully characterized by 1H and 13C NMR and X‐ray spectroscopy, and by elemental analysis. In the presence of both [Ph3C][B(C6F5)4] and AliBu3, the electron‐donating aminophenyl‐Cp‐based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph3C][B(C6F5)4] only, the electron‐withdrawing pyridyl‐Cp‐based complexes 3 , in particular scandium complex 3 b , exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99 %) polystyrene, whereas their bulky pyridyl‐Flu analogues ( 4 and 5 ) in combination with [Ph3C][B(C6F5)4] and AliBu3 displayed much‐lower activity to afford syndiotactic‐enriched polystyrene.  相似文献   

14.
The dimesitylpropargylphosphanes mes2P?CH2?C≡C?R 6 a (R=H), 6 b (R=CH3), 6 c (R=SiMe3) and the allene mes2P?C(CH3)=C=CH2 ( 8 ) were reacted with Piers’ borane, HB(C6F5)2. Compound 6 a gave mes2PCH2CH=CH(B(C6F5)2] ( 9 a ). In contrast, addition of HB(C6F5)2 to 6 b and 6 c gave mixtures of 9 b (R=CH3) and 9 c (R=SiMe3) with the regioisomers mes2P?CH2?C[B(C6F5)2]=CRH 2 b (R=CH3) and 2 c (R=SiMe3), respectively. Compounds 2 b , c underwent rapid phosphane/borane (P/B) frustrated Lewis pair (FLP) reactions under mild conditions. Compound 2 c reacted with nitric oxide (NO) to give the persistent FLP NO radical 11 . The systems 2 b , c cleaved dihydrogen at room temperature to give the respective phosphonium/hydridoborate products 13 b , c . Compound 13 c transferred the H+/H? pair to a small series of enamines. Compound 13 c was also a metal‐free catalyst (5 mol %) for the hydrogenation of the enamines. The allene 8 reacted with B(C6F5)3 to give the zwitterionic phosphonium/borate 17 . The ‐PPh2‐substituted mes2P‐propargyl system 6 d underwent a typical 1,2‐P/B‐addition reaction to the C≡C triple bond to form the phosphetium/borate zwitterion 20 . Several products were characterized by X‐ray diffraction.  相似文献   

15.
From R2POCl [R = (CH3)2N; C6H5] and Ag[SbF6] in polar solvents, extremely hygroscopic donor-acceptor complexes R2POF · SbF5 have been obtained according to equation (1) in ?Inhaltsübersicht”?. The interaction between R2POCl (R = C6H5; CH3) and the Lewis base KP(C6H5)2 proceeds via a complicated redox mechanism (see equat. (2) in ?Inhaltsübersicht”?) yielding diorganophosphinic anhydride, the mixed diorgano-diphenyl-diphosphine, and tetraphenyl-diphosphine. All these reaction products have been identified by IR-spectroscopic, analytic and other chemical methods.  相似文献   

16.
通过微波"一锅法"合成了4个双核苄基锡配合物:{[C_4H_3S(O)C=N-N=C(Me)COO](PhCH_2)_2Sn(MeOH)}_2(C1)、{[C_4H_3S(O)C=NN=C (Me)COO](p-Cl-C_6H_4CH_2)_2Sn (MeOH)}_2(C2)、{[C_4H_3S (O)C=N-N=C (PhCH_2)COO](PhCH_2)_2Sn (MeOH)}_2(C3)、{[C_4H_3S (O)C=N-N=C(PhCH_2)COO](p-Cl-C_6H_4CH_2)_2Sn(MeOH)}_2(C4),利用元素分析、IR、~1H NMR、~(13)C NMR、~(119)Sn NMR、HRMS以及X射线单晶衍射等表征了配合物结构。4个配合物分子均为双锡核分子,以Sn_2O_2四元环为中心对称,且中心锡原子与配位原子形成七配位畸变五角双锥构型。测试了配合物C1~C4的热稳定性以及配合物对癌细胞H460、HepG2、MCF7的体外抑制活性,结果表明:配合物C2是4个新合成的配合物中抑制癌细胞效果最好的化合物。  相似文献   

17.
Alkylation of Sn(OCH2CH2NMe2)2 (1) by MeI or MeOTf leads to a mixture of quaternary ammonium salts by alkylation of the NMe2 moiety. Reaction of Sn(acac)2 (2) with MeOTf gives unexpected redistribution product Sn(acac)OTf (3), which is a rare example of mono acetylacetonato tin (II) derivatives. Pentacoordinated monoorgano stannyl cation was generated by salt metathesis from PhSn(OCH2CH2NMe2)2Cl (5) and Ag[Al(OCH(CF3)2)4] or Ag[B(C6F5)4]. This cation was not isolated due to its strong electrophilic nature. It abstracts substituents from aluminate and borate weakly coordinating anions (WCAs) leading to redistribution products [Al[OCH(CF3)2]2OCH2CH2NMe2]2 (6) and [Ph(C6F5)Sn(OCH2CH2NMe2)2][H2OB(C6F5)3] (9), respectively. Structures of 3 and 6 were established by single-crystal X-ray diffraction analysis.  相似文献   

18.
Fluorinated β‐ketonaphthyliminate ligand CF3C(O)CHC[HN(naphthyl)]CH3 ( L1 ) and Pd(II) complexes with dichelate fluorinated β‐ketonaphthyliminato ligand, {CF3C(O)CHC[N(naphthyl)]CH3}2Pd ( C1 ), as well as with monochelate fluorinated β‐ketonaphthyliminato ligand, {CF3C(O)CHC[N(naphthyl)]CH3}Pd(CH3)(PPh3) ( C2 ), were synthesized and their solid‐state structures were confirmed using X‐ray crystallographic analysis. The Pd(II) complexes were employed as precursors to catalyze norbornene (NB) homo‐ and copolymerization with ester‐functionalized NB derivative using B(C6F5)3 as a co‐catalyst. High activity up to 2.3 × 105 gpolymer molPd?1 h?1 for the C1 /B(C6F5)3 system and 3.4 × 106 gpolymer molPd?1 h?1 for the C2 /B(C6F5)3 system was exhibited in NB homopolymerization. Moreover, the Pd(II) complexes exhibited a high level of tolerance towards the ester‐functionalized MB monomer. In comparison with the C1 /B(C6F5)3 system, the C2 /B(C6F5)3 system exhibited better catalytic property towards the copolymerization of NB with 5‐norbornene‐2‐carboxylic acid methyl ester (NB‐COOCH3), and soluble vinyl‐addition‐type copolymers were obtained with relatively high molecular weights (3.6 × 104–7.5 × 104 g mol?1) as well as narrow molecular weight distributions (1.49–2.15) depending on the variation of monomer feed ratios. The NB‐COOCH3 insertion ratio in all copolymers could be controlled in the range 2.8–21.0 mol% by tuning a content of 10–50 mol% NB‐COOCH3 in the monomer feed ratios. Copolymerization kinetics were expressed by the NB and NB‐COOCH3 monomer reactivity ratios: rNB‐COOCH3 = 0.18, rNB = 1.28 were determined for the C1 /B(C6F5)3 system and rNB‐COOCH3 = 0.19, rNB = 3.57 for the C2 /B(C6F5)3 system using the Kelen–Tüdõs method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Antimony pentafluoride is a strong Lewis acid and fluoride-ion acceptor that has not previously demonstrated any discreet fluoride-ion donor properties. The first donor-stabilised [SbF4]+ cations were prepared from the autoionisation of SbF5 in the presence of bidentate N-donor ligands 2,2’-bipyridine (bipy) and 1,10-phenanthroline (phen) as their [SbF6] salts. The [SbF4(N−N)][Sb2F11] (N−N=bipy, phen) salts were synthesised by the addition of one equivalent of SbF5⋅SO2 to [SbF4(N−N)][SbF6] in liquid SO2. The salts show remarkable stability and were characterised by Raman spectroscopy and multinuclear NMR spectroscopy. The crystal structures of [SbF4(phen)][SbF6] ⋅ 3CH3CN and [SbF4(phen)][SbF6] ⋅ 2SO2 were determined, showing distorted octahedral cations. DFT calculations and NBO analyses reveal that significant degree of electron-pair donation from N to Sb stabilizes [SbF4]+ with the Sb−N bond strength being approximately two thirds of that of the Sb−F bonds in these cations and the cationic charge being primarily ligand-centred.  相似文献   

20.
Aminotin(II and IV) compounds {[(2,6-i-Pr-C6H3)(H)N]-μ-(Sn)-Cl}2, {2-[(CH3)2NCH2]C6H4}2Sn[N(H)(2,6-i-Pr-C6H3)]2 and {2-[(CH3)2NCH2]C6H4}Sn[N(2,6-i-Pr-C6H3)(SiMe3)] were prepared by lithium halide elimination from tin halides and corresponding lithium complexes. [(2,6-i-Pr-C6H3)(H)N]Li (1) reacts with one half of molar equivalent of SnCl2 to give {[(2,6-i-Pr-C6H3)(H)N]-μ-(Sn)-Cl}2. The same lithium amide (1) gave with R3SnCl corresponding aminostannanes. Further reactions of these compounds with n-butyllithium gave the starting 1 and tetraorganostannanes. {2-[(CH3)2NCH2]C6H4}2SnBr2 reacts with two equivalents of 1 to {2-[(CH3)2NCH2]C6H4}2Sn[N(H)(2,6-i-Pr-C6H3)]2. The dimeric heteroleptic stannylene {[(2,6-i-Pr-C6H3)(SiMe3)N](μ2-Cl)Sn}2 reacts with 2-[(CH3)2NCH2]C6H4Li to the monomeric {2-[(CH3)2NCH2]C6H4}Sn[N(2,6-i-Pr-C6H3)(SiMe3)]. The structure in the solid state and in solution and reactivity of products is also discussed. The unique decatin cluster has been isolated by hydrolysis of {[(2,6-i-Pr-C6H3)(H)N]-μ-(Sn)-Cl}2. The structure of some compounds was also evaluated by theoretical DFT methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号