首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Block copolymers (BCPs) are used in numerous applications in modern materials science. Yet, like homopolymers, BCPs can undergo covalent bond scission when mechanically stressed (mechanochemistry), which could lead to unexpected consequences in such applications. BCPs’ heterogeneity may affect force transduction, perhaps changing force distribution and localization. To verify this, a gem-dichlorocyclopropane (gDCC) embedded linear chain is prepared and extended with a poly(methyl methacrylate) block. When stressed in solution, the mechanochemical ring-opening of gDCC is accelerated compared to homopolymers, even though the mechanophores are at the chain ends. Moreover, a higher mechanophore activation selectivity is obtained. These results indicate that mechanochemical response outside, and even far from the chain center is quite prominent in BCPs, and that forces along the polymer chain can efficiently activate multi-mechanophores regions, even when far from the polymer midchain.  相似文献   

2.
The COGEF technique (COnstrained Geometries simulating External Force) was used to investigate the effects of macroscopic forces on cyclic enediynes, which can undergo Bergman Cyclization (BC). Because the forces needed to activate BC were found to be less than the forces needed for chain scission in polymer backbones, the calculations suggest that enediynes are potentially useful mechanophores. Three enediynes studied computationally were synthesized. The thermal BC reactions for these compounds were studied by DSC and found to be consistent with the predicted thermal sensitivity based on known substituent effects. However, upon incorporation of the enediynes into a polymer matrix as crosslinks, no definitive mechanical activation was observed, and conclusions about the stress-sensitivity of enediynes were unable to be drawn. Model studies suggest that insufficient force was applied to the crosslinks for mechanical activation to be observable by DSC.  相似文献   

3.
Self-reporting polymers, which can indicate damage with perceptible optical signals in a tailored force range, are useful as stress-sensitive sensors. We demonstrate a simple approach to realize this function by embedding two distinct mechanophores — rhodamine (Rh) and bis(adamantyl)-1,2-dioxetane (Ad), in polyurethane/polylactic acid blends. The deformed blends generate red coloration and red chemiluminescence. Such a unique dual-responsive behavior was evaluated by solid-state UV-vis spectroscopy, macroscopic tensile tests with in situ RGB and light intensity analyses, which supported a stress-correlated occurrence of the ring-opening of Rh, the scission of Ad and the fluorescence resonance energy transfer process between the respective mechanochemical species. Complementarity stemming from the difference in properties and manifestations of the two mechanophores is essential. That is, the more labile Rh allows shifting the appreciable optical changes to a much lower force threshold; the transient nature and high dynamic range of mechanochemiluminescence from Ad map in real time where and when many of the covalently incorporated dioxetane bonds break; besides, the disrupted yet non-scissile structure of Rh acts as a fluorescent acceptor to effectively harvest chemiluminescence from ruptured Ad. The current strategy is thus empowering multi-functional mechano-responsive polymers with greatly improved sensitivity and resolution for multimodal stress reporting.

Probing bond scission process in a broader force range was realized by embedding mechanochromic rhodamine and mechanochemiluminescent 1,2-dioxetane in polymer blends.  相似文献   

4.
陈于蓝 《高分子科学》2017,35(11):1315-1327
Visualization and quantitative evaluation of covalent bond scission in polymeric materials are critical in understanding their failure mechanisms and improving the toughness and reliability of the materials.Mechano-responsive polymers with the ability of molecular-level transduction of force into chromism and luminescence have evoked major interest and experienced significant progress.In the current review,we highlight the recent achievements in covalent mechanochromic and mechanoluminescent polymers,leading to a bridge between macroscopic mechanical properties and microscopic bond scission events.After a general introduction concerning polymer mechanochemistry,various examples that illustrate the strategies of design and incorporation of functional and weak covalent bonds in polymers were presented,the mechanisms underlying the optical phenomenon were introduced and their potential applications as stress sensors were discussed.This review concludes with a comment on the opportunities and challenges of the field.  相似文献   

5.
Incorporation of small reactive moieties, the reactivity of which depends on externally imposed load (so‐called mechanophores) into polymer chains offers access to a broad range of stress‐responsive materials. Here, we report that polymers incorporating spirothiopyran (STP) manifest both green mechanochromism and load‐induced addition reactions in solution and solid. Stretching a macromolecule containing colorless STP converts it into green thiomerocyanine (TMC), the mechanically activated thiolate moiety of which undergoes rapid thiol–ene click reactions with certain reactive C=C bonds to form a graft or a cross‐link. The unique dual mechanochemical response of STP makes it of potentially great utility both for the design of new stress‐responsive materials and for fundamental studies in polymer physics, for example, the dynamics of physical and mechanochemical remodeling of loaded materials.  相似文献   

6.
Optical force probes that can release force-dependent and visualized signals with minimal changes in the polymer main chains under mechanical load are highly sought after but currently limited. In this study, we introduce a flex-activated mechanophore (FA) based on the Diels–Alder adduct of anthracene and dimethyl acetylenedicarboxylatea that exhibits turn-on mechanofluorescence. We demonstrate that when FA is incorporated into polymer networks or in its crystalline state, it can release fluorescent anthracenes through a retro-Diels–Alder mechanochemical reaction under compression or hydrostatic high pressure, respectively. The flex-activated mechanism of FA is successfully confirmed. Furthermore, we systematically modulate the force delivered to the mechanophore by varying the crosslinking density of the networks and the applied macroscopic pressures. This modulation leads to incremental increases in mechanophore activation, successive release of anthracenes, and quantitative enhancement of fluorescence intensity. The exceptional potential of FA as a sensitive force probe in different bulk states is highlighted, benefiting from its unique flex-activated mode with highly emissive fluorophore releasing. Overall, this report enriches our understanding of the structures and functions of flex-activated mechanophores and polymeric materials.  相似文献   

7.
Mechanophores are molecules that are incorporated into a host material and react to the local mechanical condition—the state of stress or strain—of that host material. Among their many purposes is that of a reporter: Mechanophores whose optical activity changes in response to mechanical cues can reveal bulk material processes that are ordinarily hidden, such as fatigue and fracture. Moreover, they may do so well before a material is fully fractured. To extract quantitative information from the optical signals from embedded mechanophores it is important that the mechanophores, which are generally a minority component of the material, report proportionally and unambiguously on the mechanical condition of the bulk. This is particularly important for early reporting of damage and wear, for which the optical signal from the mechanophore should accurately reflect bulk bond scission. In this article, we develop and analyze a general theory for the quality of optical mechanoreporting by mechanophores in soft materials, based on the Bell-Evans theory of bond breaking. We find, that at the typical low fractions in which mechanophores are incorporated the overall change in strength is limited, but that the proportionality of the reporting can be off by significant amounts, particularly at short times after loading but, for non-scissile bonds, at long times as well.  相似文献   

8.
Ultrasound activation of mechanophores embedded in polymer backbones has been extensively studied of late as a method for realizing chemical reactions using force. To date, however, there have been few attempts at systematically investigating the effects of mechanophore structure upon rates of activation by an acoustic field. Herein, we develop a method for comparing the relative reactivities of various cyclobutane mechanophores. Through the synthesis and ultrasonic irradiation of a molecular weight series of poly(methyl acrylate) polymers in which each macromolecule has a single chain-centered mechanophore, we find measurable and statistically significant shifts in molecular weight thresholds for mechanochemical activation that depend on the structure of the mechanophore. We also show that calculations based on the constrained geometries simulate external force method reliably predict the trends in mechanophore reactivity. These straightforward calculations and the experimental methods described herein may be useful in guiding the design and the development of new mechanophores for targeted applications.  相似文献   

9.
Polyolefins that contain polar functional groups are important materials for next‐generation lightweight engineering thermoplastics. Post‐polymerization modification is an ideal method for the incorporation of polar groups into branched polyolefins; however, it typically results in chain scission events, which have deleterious effects on polymer properties. Herein, we report a metal‐free method for radical‐mediated C?H xanthylation that results in the regioselective functionalization of branched polyolefins without coincident polymer‐chain scission. This method enables a tunable degree of polymer functionalization and capitalizes on the versatility of the xanthate functional group to unlock a wide variety of C?H transformations previously inaccessible on branched polyolefins.  相似文献   

10.
Spiropyran (SP) mechanophores (mechanochemically reactive units) can impart the unique functionality of visual stress detection to polymers and have potential for use in smart materials with self-sensing capabilities. These color-generating mechanophores were incorporated into polyurethane via step growth polymerization. Polyurethane, which is inherently a versatile engineering polymer, possesses an optimized balance of mechanical toughness and elasticity to allow for investigation of the kinetics of the mechanochemical response of the SP mechanophore in the bulk polymer via fluorescence and absorbance measurements. The stress-induced 6-π electrocyclic ring-opening to the colored merocyanine (MC) form of the mechanophore was quantified by measuring the change in absorbance of the polymer, while it was held at constant strain. The closing kinetics of the mechanophore was also studied by fluorescence imaging. Finally, the effects of mechanical strain on the equilibrium between the SP and MC forms are reported and discussed.  相似文献   

11.
This paper is devoted to a comprehensive study of the photo-oxidation of polymeric materials with the goal of correlating modifications of the polymer properties at the molecular and macroscopic levels. Several techniques were used to characterise the modifications of the chemical properties and mechanical behaviour over time under UV light. The methodology was developed on materials used as organic coatings; initially, a well-characterised phenoxy resin (PKHJ®) was chosen as a model and then the approach was applied to an acrylate-melamine thermoset currently used as a topcoat in the automotive industry. Analysis of degraded samples by IR spectroscopy allowed us to propose a photo-oxidation mechanism. This mechanism suggested that chain scission occurred under photo-oxidation. To entirely understand the degradation of the polymers, gel fraction, thermoporosimetry, DMA, AFM nanoindentation and micro-hardness determinations were performed. The results showed that crosslinking reactions occurred in competition with chain scission and explained for the first time why crosslinking reactions were quite prevalent. Based on the obtained results, quantitative correlations were made between the various criteria of degradation, thus relating the chemical structure changes to the mechanical property modifications.  相似文献   

12.
In free‐radical olefin polymerizations, the polymer transfer reactions could lead to chain scission as well as forming long‐chain branches. For the random scission of branched polymers, it is virtually impossible to apply usual differential population balance equations because the number of possible scission points is dependent on the complex molecular architecture. On the other hand, the present problem can be solved on the basis of the probability theory by considering the history of each primary polymer molecule in a straightforward manner. The random sampling technique is used to solve this problem and a Monte Carlo simulation method is proposed. In this simulation method, one can observe the structure of each polymer molecule formed in this complex reaction system, and virtually any structural information can be obtained. In the illustrative calculations, the full molecular weight distribution development, the gel point determination, and examples of two‐ and three‐dimensional polymer structure are shown. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 391–403, 2001  相似文献   

13.
Polymers that can be cleaved at predetermined sites by ionizing radiations have been synthesized by incorporating benzylic esters into their skeletons. Secondary electrons generated by ionizing radiations are captured by the benzylic esters to dissociate into benzylic radicals and carboxyl anions, so that the polymer skeletons are cleaved at predetermined sites. The γ‐irradiation of a three‐armed star polymer, 1,2,4‐tri‐(2‐polystyrene‐2‐methyl‐propyonyloxymethyl)‐benzene, results in the selective scission of the arms, and the resultant radicals neither combine with each other nor graft to the other polymer skeletons to give larger polymer molecules. The irradiation of poly(methyl methacrylate) crosslinked with 4‐methacryloyloxybenzyl methacrylate results in the selective scission at the crosslinking sites with high radiation‐chemical efficiency of 8.5 scissions per 100 eV radiation energy absorbed. These results indicate that the incorporation of benzylic esters into polymer skeletons opens a new way of constructing radiation resists with high sensitivity to ionizing radiations and high resistivity to plasma etching. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1945–1953, 2008  相似文献   

14.
The introduction of mechanophores into polymers makes it possible to transduce mechanical forces into chemical reactions that can be used to impart functions such as self‐healing, catalytic activity, and mechanochromic response. Here, an example of mechanically induced metal ion release from a polymer is reported. Ferrocene (Fc) was incorporated as an iron ion releasing mechanophore into poly(methyl acrylate)s (PMAs) and polyurethanes (PUs). Sonication triggered the preferential cleavage of the polymers at the Fc units over other bonds, as shown by a kinetic study of the molar mass distribution of the cleaved Fc‐containing and Fc‐free reference polymers. The released and oxidized iron ions can be detected with KSCN to generate the red‐colored [Fe(SCN)n(H2O)6?n)](3?n)+ complex or reacted with K4[Fe(CN)6] to afford Prussian blue.  相似文献   

15.
Multiple mechanisms of backbiting and β‐scission reactions in free‐radical polymerization of methyl acrylate are modeled using different levels of theory, and the rigid‐rotor harmonic‐oscillator (RRHO) and hindered‐rotor (HR) approximations. We identify the most cost‐effective computational method(s) for studying the reactions and assess the effects of different factors (e.g., functional type and chain length) on thermodynamic quantities, and then identify the most likely mechanisms with first‐principles thermodynamic calculations and simulations of nuclear magnetic resonance (NMR) spectra. To this end, the composite method G4(MP2)‐6X is used to calculate the energy barrier of a representative backbiting reaction. This calculated barrier is then compared with values obtained using density functional theory (DFT) (B3LYP, M06‐2X, and PBE0) and a wavefunction‐based quantum chemistry method (MP2) to establish the benchmark method. Our study reveals that the barriers predicted using B3LYP, M06‐2X, and G4(MP2)‐6X are comparable. The entropies calculated using the RRHO and HR approximations are also comparable. DFT calculations indicate that the 1:5 backbiting mechanism with a six‐membered ring transition state and 1:7 backbiting with an eight‐membered ring transition state are energetically more favored than 1:3 backbiting and 1:9 backbiting mechanisms. The thermodynamic favorability of 1:5 versus 1:7 backbiting depends on the live polymer chain length. The activation energies and rate constants of the left and right β‐scission reactions are nearly equal. The calculated and experimental 13C and 1H NMR chemical shifts of polymer chains affected by backbiting and β‐scission reactions agree with each other, which provides further evidence in favor of the proposed mechanisms. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Mechanophores capable of releasing N‐heterocyclic carbene (NHC), a strong base, are combined with triggerable chemiluminescent substrates to give a novel system for mechanically induced chemiluminescence. The mechanophores are palladium bis‐NHC complexes, centrally incorporated in poly(tetrahydrofuran) (pTHF). Chemiluminescence is induced from two substrates, adamantyl phenol dioxetane (APD) and a coumaranone derivative, upon sonication of dilute solutions of the polymer complex and either APD or the coumaranone. Control experiments with a low molecular weight Pd complex showed no significant activation and the molecular weight dependence of the coumaranone emission supports the mechanical origin of the activation. The development of this system is a first step towards mechanoluminescence at lower force thresholds and catalytic mechanoluminescence.  相似文献   

17.
In free‐radical olefin polymerizations, the polymer‐transfer reactions could lead to chain scission as well as the formation of long‐chain branches. The Monte Carlo simulation for free‐radical polymerization that involves simultaneous long‐chain branching and random scission is used to investigate detailed branched structure. The relationship between the mean‐square radius of gyration 〈s2〉 and degree of polymerization P as well as that between the branching density and P is the same for both with and without random scission reactions—at least for smaller frequencies of scission reactions. The 〈s2〉 values were larger than those calculated from the Zimm–Stockmayer (Z‐S) equation in which random distribution of branch points is assumed, and therefore, the Z‐S equation may not be applied for low‐density polyethylenes. The elution curves of size exclusion chromatography were also simulated. The molecular weight distribution (MWD) calibrated relative to standard linear polymers is much narrower than the true MWD, and high molecular weight tails are clearly underestimated. A simplified method to estimate the true MWD from the calibrated MWD data is proposed. The MWD obtained with a light scattering photometer in which the absolute weight‐average molecular weight of polymers at each retention volume is determined directly is considered a reasonable estimate of the true MWD. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2960–2968, 2001  相似文献   

18.
In many polymers under corrosive liquids, degradation followed after permeation of environmental solution for a long period. The permeation rate of environmental solution, in many cases, is very low in corrosion-resistant polymeric materials. Therefore, the observation of the permeation of environmental solution and degradation of polymeric materials are very difficult in practical application. A simulation of permeation of solution is required in order to understand the permeation behavior of environmental solution and polymer degradation. A detailed analysis of the permeation behavior of solution accompanied by chemical reaction is important to study for improving the lifetime of polymers. Polyamide 66 (PA66) and sulfuric acid solution were used to investigate the quantitative study of permeation of environmental solution and its relation to degradation of polymeric materials. Correlation between diffusion process and degradation of PA66 related to the decrease of weight average molecular weight was defined. The diffusion rate of sulfuric acid solution was found to increase by decreasing weight average molecular weight of PA66 due to the established chain scission by hydrolysis reaction. The permeation of sulfuric acid solution that affected the decomposition reaction was modeled and quantitative evaluation of permeation of sulfuric acid was established.  相似文献   

19.
We demonstrate an intermolecular reaction cascade to control the force which triggers crosslinking of a mechanochromic polymer of spirothiopyran (STP). Mechanochromism arises from rapid reversible force-sensitive isomerization of STP to a merocyanine, which reacts rapidly with activated C=C bonds. The concentration of such bonds, and hence the crosslinking rate, is controlled by force-dependent dissociation of a Diels–Alder adduct of anthracene and maleimide. Because the adduct requires ca. 1 nN higher force to dissociate at the same rate as that of STP isomerization, the cascade limits crosslinking to overstressed regions of the material, which are at the highest rate of material damage. Using comb polymers decreased the minimum concentration of mechanophores required to crosslinking by about 100-fold compared to previous examples of load-strengthening materials. The approach described has potential for controlling a broad range of reaction sequences triggered by mechanical load.  相似文献   

20.
The surface structure of polytetrafluoroethylene (PTFE) upon α‐particle irradiation has been investigated at doses in the range of 1 × 107 to 1 × 1011 Rad and compared with the surface structure of the unirradiated polymer. Both neat and 25% fiberglass content PTFE were studied. The samples, maintained at nominal room temperature, were irradiated in vacuum by 5.5 MeV 4He2+ ions generated in a tandem accelerator beam line. Static time‐of‐flight SIMS (ToF‐SIMS) was employed to probe chemical changes at the surface as a function of the irradiation level. In general, the data are indicative of increased cross‐linking at α‐doses less than 1 × 109 Rad, followed by increased fragmentation and unsaturation at α‐doses greater than 1 × 109 Rad. Throughout the irradiation regime, scission is a constant factor promoting cross‐linking, branching, and unsaturation. However, at α‐doses greater than 1 × 1010 Rad, extreme structural degradation of the polymer becomes evident and is accompanied by conversion to oxygen‐functionalized and aliphatic compounds. Thus, for PTFE in an α‐particle field, an upper exposure limit of ~1010 Rad is essential for nominal retention of molecular structure. Finally, a quantitative relationship between α‐dose and characteristic fragment ion intensity is developed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号