首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In general, aromaticity can be clarified as π‐ and σ‐aromaticity according to the type of electrons with major contributions. The traditional π‐aromaticity generally describes the π‐conjugation in fully unsaturated rings whereas σ‐aromaticity may stabilize fully saturated rings with delocalization caused by σ‐electron conjugation. Reported herein is an example of σ‐aromaticity in an unsaturated three‐membered ring (3 MR), which is supported by experimental observations and theoretical calculations. Specifically, when the 3 MR in cyclopropaosmapentalene is cleaved by ethane through two isodesmic reactions, both of them are highly endothermic (+29.7 and +35.0 kcal mol?1). These positive values are in sharp contrast to the expected exothermicity, thus indicating aromaticity in the 3 MR. Further nucleus‐independent chemical shift and anisotropy of the current‐induced density calculations reveal the nature of σ‐aromaticity in the unsaturated 3 MR.  相似文献   

5.
6.
By means of a combined experimental and theoretical approach, the electronic features and chemical behavior of metalla‐N‐heterocyclic carbenes (MNHCs, N‐heterocyclic carbenes containing a metal atom within the heterocyclic skeleton) have been established and compared with those of classical NHCs. MNHCs are strongly basic (proton affinity and pKa values around 290 kcal mol?1 and 36, respectively) with a narrow singlet–triplet gap (around 23 kcal mol?1). MNHCs can be generated from the corresponding metalla‐imidazolium salts and trapped by addition of transition‐metal complexes affording the corresponding heterodimetallic dicarbene derivatives, which can serve as carbene transfer agents.  相似文献   

7.
Farid Moeinpour 《中国化学》2011,29(7):1429-1433
The regiochemistry of 1,3‐dipolar cycloaddition reactions of C,N‐diphenyl nitrone with some vinyl sulfox‐ imines as dipolarophile was investigated using density functional theory (DFT)‐based reactivity indexes and activation energy calculations at B3LYP/6‐31G(d) level of theory. Analysis of the geometries and bond orders (BOs) at the TS structures associated with the different reaction pathways shows that these 1,3‐dipolar cycloaddition reactions occur via an asynchronous concerted mechanism. Analysis of the local electrophilicity and nucleophilicity indexes permits an interpretation about the regioselectivity of these 1,3‐dipolar cycloaddition reactions. The theoretical results obtained in the work clearly predict the regiochemistry of the isolated cycloadducts and agree to experimental outcomes.  相似文献   

8.
1,3‐Dipolar cycloaddition between methyl methacrylate as dipolarophile and some nitrilimines which were generated in situ afforded the new pyrazoles. The regiochemistry and reactivity of these reactions has been investigated on the basis of density functional theory (DFT)‐based reactivity indexes and activation energy calculations. The theoretical 13C NMR chemical shifts of the cycloadducts which were obtained by GIAO method were comparable with the observed values.  相似文献   

9.
The catalytic conversion of carbon dioxide and olefins into acrylates has been a long standing target, because society attempts to synthesize commodity chemicals in a more economical and sustainable fashion. Although nickel complexes have been known to successfully couple CO2 and ethylene for decades, a key β‐hydride elimination step has proven a major obstacle to the development of a catalytic process. Recent studies have shown that Lewis acid additives can be used to create a lower‐energy pathway for β‐hydride elimination and facilitate a low number of catalytic turnovers. However, the exact manner, in which the Lewis acid promotes β‐hydride elimination remains to be elucidated. Herein, we describe the kinetic and thermodynamic role that commercially relevant and weakly Lewis acidic sodium salts play in promoting β‐hydride elimination from nickelalactones synthesized from CO2 and ethylene. This process is compared to a non‐Lewis acid promoted pathway, and DFT calculations were used to identify differences between the two systems. The sodium‐free isomerization reaction gave a rare CO2‐derived β‐nickelalactone complex, which was structurally characterized.  相似文献   

10.
The first non‐pincer‐type mononuclear scandium alkylidene complexes were synthesized and structurally characterized. These complexes exhibited short Sc?C bond lengths and even one of the shortest reported to date (2.1134(18) Å). The multiple character of the Sc?C bond was highlighted by a DFT calculation. This was confirmed by experimental reactivity study where the complex underwent [2+1] cycloaddition with elemental selenium and [2+2] cycloaddition with imine. DFT calculation also revealed a strong nucleophilic behavior of the alkylidene complex that was experimentally demonstrated by the C?H bond activation of phenylacetylene.  相似文献   

11.
An intermolecular [2+2] cycloaddition reaction for the synthesis of 1,2‐dimethylenecyclobutane derivatives from the commercially available starting materials aryl acetylenes, nBuLi, formamides, and trimethylsilyl cyanide (TMSCN) has been achieved. This reaction displays high regio‐ and stereoselectivities due to the captodative effect. The mechanism of the reaction has been investigated by the deuterium labeling experiments and DFT calculations.  相似文献   

12.
Substituted cyclopropenes have recently attracted attention as stable “mini‐tags” that are highly reactive dienophiles with the bioorthogonal tetrazine functional group. Despite this interest, the synthesis of stable cyclopropenes is not trivial and their reactivity patterns are poorly understood. Here, the synthesis and comparison of the reactivity of a series of 1‐methyl‐3‐substituted cyclopropenes with different functional handles is described. The rates at which the various substituted cyclopropenes undergo Diels–Alder cycloadditions with 1,2,4,5‐tetrazines were measured. Depending on the substituents, the rates of cycloadditions vary by over two orders of magnitude. The substituents also have a dramatic effect on aqueous stability. An outcome of these studies is the discovery of a novel 3‐amidomethyl substituted methylcyclopropene tag that reacts twice as fast as the fastest previously disclosed 1‐methyl‐3‐substituted cyclopropene while retaining excellent aqueous stability. Furthermore, this new cyclopropene is better suited for bioconjugation applications and this is demonstrated through using DNA templated tetrazine ligations. The effect of tetrazine structure on cyclopropene reaction rate was also studied. Surprisingly, 3‐amidomethyl substituted methylcyclopropene reacts faster than trans‐cyclooctenol with a sterically hindered and extremely stable tert‐butyl substituted tetrazine. Density functional theory calculations and the distortion/interaction analysis of activation energies provide insights into the origins of these reactivity differences and a guide to the development of future tetrazine coupling partners. The newly disclosed cyclopropenes have kinetic and stability advantages compared to previously reported dienophiles and will be highly useful for applications in organic synthesis, bioorthogonal reactions, and materials science.  相似文献   

13.
Three‐ and five‐membered rings that bear the (Si‐C‐S ) and (Si‐C‐C‐C‐S ) unit have been synthesized by the reactions of L SiCl ( 1 ; L =PhC(NtBu)2) and L′ Si ( 2 ; L′ =CH{(C?CH2)(CMe)(2,6‐iPr2C6H3N)2}) with the thioketone 4,4′‐bis(dimethylamino)thiobenzophenone. Treatment of 4,4′‐bis(dimethylamino)thiobenzophenone with L SiCl at room temperature furnished the [1+2]‐cycloaddition product silathiacyclopropane 3 . However, reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si at low temperature afforded a [1+4]‐cycloaddition to yield the five‐membered ring product 4 . Compounds 3 and 4 were characterized by NMR spectroscopy, EIMS, and elemental analysis. The molecular structures of 3 and 4 were unambiguously established by single‐crystal X‐ray structural analysis. The room‐temperature reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si resulted in products 4 and 5 , in which 4 is the dearomatized product and 5 is formed under the 1,3‐migration of a hydrogen atom from the aromatic phenyl ring to the carbon atom of the C? S unit. Furthermore, the optimized structures of probable products were investigated by using DFT calculations.  相似文献   

14.
Aromaticity is one of the most important concepts in organic chemistry. A variety of metalla‐aromatic compounds have been recently prepared and in most of those examples, the metal participates only in a monocyclic ring. In contrast, metal‐bridged bicyclic aromatic molecules, in which a metal is shared between two aromatic rings, have been less developed. Herein, we report the first metal‐bridged tricyclic aromatic system, in which the metal center is shared by three aromatic five‐membered rings. These metalla‐aromatics are formed by reaction between osmapentalyne and arene nucleophiles. Experimental results and theoretical calculations reveal that the three five‐membered rings around the osmium center are aromatic. In addition, the broad absorption bands in the UV/Vis absorption spectra of these novel aromatic systems cover almost the entire visible region. This straightforward synthetic strategy may be extended to the synthesis of other metal‐bridged polycyclic aromatics.  相似文献   

15.
16.
The synthesis of small cyclic metal carbynes is challenging due to the large angle strain associated with the highly distorted nonlinear triple bonds. Herein, we report a general route for the synthesis of five‐membered cyclic metal carbyne complexes, osmapentalynes, by the reactions of an osmapentalene derivative with allene, alkyne, and alkene. Experimental observations and theoretical calculations document the aromaticity in the fused five‐membered rings of osmapentalynes. The realization of transforming osmapentalene to osmapentalyne through this general route would not only allow further exploration of metallapentalyne chemistry but also show promising applications of this novel aromatic system with broad absorption band and high molar absorption coefficient.  相似文献   

17.
The transmetalation of bimetallic copper–sodium silsesquioxane cages, namely, [(PhSiO1.5)10(CuO)2(NaO0.5)2] (“Cooling Tower”; 1 ), [(PhSiO1.5)12(CuO)4(NaO0.5)4] (“Globule”; 2 ), and [(PhSiO1.5)6(CuO)4(NaO0.5)4(PhSiO1.5)6] (“Sandwich”; 3 ), resulted in the generation of three types of hexanuclear cylinder‐like copper silsesqui‐ oxanes, [(PhSiO1.5)12(CuO)6(C4H9OH)2(C2H5OH)6] ( 4 ), [(PhSiO1.5)12(CuO)6(C4H8O2)4(PhCN)2(MeOH)4] ( 5 ), and [(PhSiO1.5)12(CuO)6(NaCl)(C4H8O2)12(H2O)2] ( 6 ). The products show a prominent “solvating system–structure” dependency, as determined by X‐ray diffraction. Topological analysis of cages 1 – 6 was also performed. In addition, DFT theory was used to examine the structures of the Cooling Tower and Cylinder compounds, as well as the spin density distributions. Compounds 1 , 2 , and 5 were applied as catalysts for the direct oxidation of alcohols and amines into the corresponding amides. Compound 6 is an excellent catalyst in the oxidation reactions of benzene and alcohols.  相似文献   

18.
19.
Diels–Alder cycloaddition is one of the most powerful tools for the functionalization of single‐walled carbon nanotubes (SWCNTs). Density functional theory at the B3‐LYP level of theory has been used to investigate the reactivity of different‐diameter SWCNTs (4–9,5) in Diels–Alder reactions with 1,3‐butadiene; the reactivity was found to decrease with increasing SWCNT diameter. Distortion/interaction analysis along the whole reaction pathway was found to be a better way to explore the reactivity of this type of reaction. The difference in interaction energy along the reaction pathway is larger than that of the corresponding distortion energy. However, the distortion energy plots for these reactions show the same trend. Therefore, the formation of the transition state can be determined from the interaction energy. A lower interaction energy leads to an earlier transition state, which indicates a lower activation energy. The computational results also indicate that the original distortion of the SWCNTs leads to an increase in the reactivity of the SWCNTs.  相似文献   

20.
Facial selectivity during the π‐coordination of pseudo‐tetrahedral iridacycles by neutral (Cr(CO)3), monocationic (Cp*Ru+), and biscationic (Cp*Ir2+) metal centers was directly influenced by the coulombic imbalance in the coordination sphere of the chelated Ir center. We also showed by using theoretical calculations that the feasibility of the related metallacycles that displayed metallocenic planar chirality was dependent to the presence of an electron‐donating group, such as NMe2, which contributed to the overall stability of the complexes. When the π‐bonded moiety was the strongly electron‐withdrawing Cp*Ir2+ group, the electron donation from NMe2 resulted in major conformational changes, with a barrier to rotation of about 17 kcal mol?1 for this group that became spectroscopically diastereotopic (high‐field 1H NMR spectroscopy). This peculiar property is proposed as a means to introduce a new type of constitutional chirality at the nitrogen center: planar chirality at tertiary aromatic amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号