首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
Three highly porous metal–organic frameworks (MOFs) with a uniform rht‐type topological network but hierarchical pores were successfully constructed by the assembly of triazole‐containing dendritic hexacarboxylate ligands with ZnII ions. These transparent MOF crystals present gradually increasing pore sizes upon extension of the length of the organic backbone, as clearly identified by structural analysis and gas‐adsorption experiments. The inherent accessibility of the pores to large molecules endows these materials with unique properties for the uptake of large guest molecules. The visible selective adsorption of dye molecules makes these MOFs highly promising porous materials for pore‐size‐dependent large‐molecule capture and separation.  相似文献   

2.
Endowed with chiral channels and pores, chiral metal–organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality‐enriched MOFs with accessible pores. The ability of the materials to form host–guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed‐matrix membranes (MMMs) composed of chirality‐enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation.  相似文献   

3.
In our continuing quest to develop a metal–organic framework (MOF)‐catalyzed tandem pyrrole acylation–Nazarov cyclization reaction with α,β‐unsaturated carboxylic acids for the synthesis of cyclopentenone[b]pyrroles, which are key intermediates in the synthesis of natural product (±)‐roseophilin, a series of template‐induced Zn‐based ( 1–3 ) metal‐organic frameworks (MOFs) have been solvothermally synthesized and characterized. Structural conversions from non‐porous MOF 1 to porous MOF 2 , and back to non‐porous MOF 3 arising from the different concentrations of template guest have been observed. The anion–π interactions between the template guests and ligands could affect the configuration of ligands and further tailor the frameworks of 1–3 . Futhermore, MOFs 1–3 have shown to be effective heterogeneous catalysts for the tandem acylation–Nazarov cyclization reaction. In particular, the unique structural features of 2 , including accessible catalytic sites and suitable channel size and shape, endow 2 with all of the desired features for the MOF‐catalyzed tandem acylation–Nazarov cyclization reaction, including heterogeneous catalyst, high catalytic activity, robustness, and excellent selectivity. A plausible mechanism for the catalytic reaction has been proposed and the structure–reactivity relationship has been further clarified. Making use of 2 as a heterogeneous catalyst for the reaction could greatly increase the yield of total synthesis of (±)‐roseophilin.  相似文献   

4.
This Review covers design strategies, synthetic challenges, host–guest chemistry, and functional properties of interlocked supramolecular cages. Some dynamic covalent organic structures are discussed, as are selected examples of interpenetration in metal–organic frameworks, but the main focus is on discrete coordination architectures, that is, metal‐mediated dimers. Factors leading to interpenetration, such as geometry, flexibility and chemical makeup of the ligands, coordination environment, solvent effects, and selection of suitable counter anions and guest molecules, are discussed. In particular, banana‐shaped bis‐pyridyl ligands together with square‐planar metal cations have proven to be suitable building blocks for the construction of interpenetrated double‐cages obeying the formula [M4L8]. The peculiar topology of these double‐cages results in a linear arrangement of three mechanically coupled pockets. This allows for the implementation of interesting guest encapsulation effects such as allosteric binding and template‐controlled selectivity. In stimuli‐responsive systems, anionic triggers can toggle the binding of neutral guests or even induce complete structural conversions. The increasing structural and functional complexity in this class of self‐assembled hosts promises the construction of intelligent receptors, novel catalytic systems, and functional materials.  相似文献   

5.
Two anionic metal–organic frameworks (MOFs) with 1D mesoporous tubes ( 1 ) and chiral mesoporous cages ( 2 ) have been rationally constructed by means of a predesigned size‐extended hexatopic ligand, namely, 5,5′,5′′‐(1,3,5‐triazine‐2,4,6‐triyl)tris‐ (azanediyl)triisophthalate (TATAT). Charge neutrality is achieved by protonated dimethylamine cations. Notably, the two MOFs can be used to separate large molecules based on ionic selectivity rather than the size‐exclusion effect so far reported in the literature. Owing to the imino triazine backbone and carboxyl groups of the hexatopic ligand, which provide important host–guest interactions, rare solvatochromic phenomena of 1 and 2 are observed on incorporating acetone and ethanol guests. Furthermore, guest‐dependent luminescence properties of compound 2 were investigated, and the results show that luminescence intensity is significantly enhanced in toluene and benzene, while quenching effects are observed in acetone and ethanol. Thus, compound 2 may be a potential material for luminescent probes.  相似文献   

6.
Two anionic metal–organic frameworks were successfully prepared based on pre‐designed flexible multicarboxylate ligands and indium cations. Owing to the flexibility of the bridging organic linkers, which could not themselves sustain the frameworks, both of the frameworks showed thermal instability and shrinkage after removal of guest solvent molecules. Inspired by bamboo, we used a guest‐dependent approach to tune the permanent porosity of the MOFs. In this approach, several tetraalkyammonium cations of different sizes were introduced into the channels by cation exchange to act as partitions and to support the main frameworks. This approach significantly enhanced the stability of the framework and its permanent porosity. Moreover, the gas‐adsorption properties (such as gate sorption, hysteresis, and selectivity) of the MOFs were also modulated by the judicious choice of guest cations.  相似文献   

7.
Enantiopure alleno‐acetylenic ligands assemble diastereoselectively upon the addition of a zinc(II) salt to form triple‐stranded helicates, which provide a sufficiently large helical cage (“helicage”) for the encapsulation of guests. The inclusion complexation of heteroalicycles is confirmed by ROESY and DOSY NMR spectroscopy and quantified in 1H NMR binding titrations. The ECD spectra of the helicates, which showed strong Cotton effects and exciton coupling, were found to be extremely sensitive to the nature of the guest molecules. Consequently, a series of nonchromophoric, achiral guests of different sizes as well as regioisomers (1,3‐ and 1,4‐dioxane) became distinguishable on the basis of their induced CD (ICD) spectra. Molecular dynamics (MD) simulations show the adaptability of the cavity size to individual guest molecules and support the selective ICD output. Particularly high affinity towards 1,4‐dioxane allowed its selective detection at parts‐per‐million (ppm) levels in aqueous solutions.  相似文献   

8.
A tetragold(I) rectangle‐like metallocage containing two pyrene‐bis‐imidazolylidene ligands and two carbazolyl‐bis‐alkynyl linkers is used for the encapsulation of a series of polycyclic aromatic hydrocarbons (PAHs), including corannulene. The binding affinities obtained for the encapsulation of the planar PAHs guests in CD2Cl2 are found to exponentially increase with the number of π‐electrons of the guest (1.3 > logK >6.6). For the bowl‐shaped molecule of corannulene, the association constant is much lower than the expected one according to its number of electrons. The molecular structure of the host–guest complex formed with corannulene shows that the molecule of the guest is compressed, while the host is expanded, thus showing an interesting case of artificial mutual induced‐fit arrangement.  相似文献   

9.
A light‐responsive system constructed from hydrogen‐bonded azo‐macrocycles demonstrates precisely controlled propensity in molecular encapsulation and release process. A significant decrease in the size of the cavity is observed in the course of the E→Z photoisomerization based on the results from DFT calculations and traveling wave ion mobility mass spectrometry. These macrocyclic hosts exhibit a rare 2:1 host–guest stoichiometry and guest‐dependent slow or fast exchange on the NMR timescale. With the slow host–guest exchange and switchable shape change of the cavity, quantitative release and capture of bipyridinium guests is achieved with the maximum release of 68 %. This work underscores the importance of slow host–guest exchange on realizing accurate release of organic cations in a stepwise manner under light irradiation. The light‐responsive system established here could advance further design of novel photoresponsive molecular switches and mechanically interlocked molecules.  相似文献   

10.
We have prepared organic guest molecules in which two pyridinium rings are connected through an aromatic/aliphatic bridge bearing a carboxyl group. The supramolecular interactions between these guests and macrocyclic hosts cucurbit[7]uril ( CB7 ) and cucurbit[8]uril ( CB8 ) has been studied. We have demonstrated that the binding modes of the complexes depend on the type of central bridge present in the guest molecules and the size of the macrocycle. We have also showed that the binding mode between cucurbiturils and guests with aromatic bridges is pH independent. On the other hand, a guest containing an aliphatic bridge and CB7 formed a pseudorotaxane, which behaved as a pH‐driven molecular switch.  相似文献   

11.
There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy‐transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh‐Cp‐type metal complexes can be encapsulated inside a self‐assembled M6L4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co‐encapsulation is observed. This principle is demonstrated by co‐encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge‐transfer interaction may also contribute to this effect. Charge‐transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge‐transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge‐transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space.  相似文献   

12.
Metal–organic self‐assembly has proven to be of great use in constructing structures of increasing size and intricacy, but the largest assemblies lack the functions associated with the ability to bind guests. Here we demonstrate the self‐assembly of two simple organic molecules with CdII and PtII into a giant heterometallic supramolecular cube which is capable of binding a variety of mono‐ and dianionic guests within an enclosed cavity greater than 4200 Å3. Its structure was established by X‐ray crystallography and cryogenic transmission electron microscopy. This cube is the largest discrete abiological assembly that has been observed to bind guests in solution; cavity enclosure and coulombic effects appear to be crucial drivers of host–guest chemistry at this scale. The degree of cavity occupancy, however, appears less important: the largest guest studied, bound the most weakly, occupying only 11 % of the host cavity.  相似文献   

13.
The interplay of guest encapsulation and release mechanisms in nanoscale metal–organic vehicles and its effect on the drug‐delivery kinetics of these materials were investigated through a new multidisciplinary approach. Two rationally‐designed molecular guests were synthesized, which consist of a red‐fluorescent benzophenoxazine dye covalently tethered to a coordinating catechol group and a protected, non‐coordinating catechol moiety. This allowed loading of the guests into compositionally and structurally equivalent coordination polymer particles through distinct encapsulation mechanisms: coordination and mechanical entrapment. The two types of particles delivered their fluorescent cargo with remarkably different kinetic profiles, which could be satisfactorily modeled considering degradation‐ and diffusion‐controlled release processes. This demonstrates that careful selection of the method of guest incorporation into coordination polymer nanoparticles allows selective tuning of the rate of drug delivery from these materials and, therefore, of the time window of action of the encapsulated therapeutic agents.  相似文献   

14.
Microporous metal–organic frameworks (MOFs) are comparatively new porous materials. Because the pores within such MOFs can be readily tuned through the interplay of both metal‐containing clusters and organic linkers to induce their size‐selective sieving effects, while the pore surfaces can be straightforwardly functionalized to enforce their different interactions with gas molecules, MOF materials are very promising for gas separation. Furthermore, the high porosities of such materials can enable microporous MOFs with optimized gas separation selectivity and capacity to be targeted. This Focus Review highlights recent significant advances in microporous MOFs for gas separation.  相似文献   

15.
Herein, we report a strategy for exploiting nanoscale metal–organic frameworks (nano‐MOFs) as templates for the layer‐by‐layer (LbL) assembly of polyelectrolytes. Because small‐molecule drugs or imaging agents cannot be efficiently encapsulated by polyelectrolyte nanocapsules, we investigated two promising and biocompatible polymers (comb‐shaped polyethylene glycol (PEG) and hyperbranched polyglycerol‐based PEG) for the conjugation of model drugs and imaging agents, which were then encapsulated inside the nano‐MOF‐templated nanocapsules. Furthermore, we also systemically explored the release kinetics of the encapsulated conjugates, and examined how the encapsulation and/or release processes could be controlled by varying the composition and architecture of the polymers. We envision that our nano‐MOFs‐templated nanocapsules, through combining with small‐molecule–polymer conjugates, will represent a new type of delivery system that could open up new opportunities for biomedical applications.  相似文献   

16.
Getting suitable crystals for single‐crystal X‐ray crystallographic analysis still remains an art. Obtaining single crystals of metal–organic frameworks (MOFs) containing organic polymers poses even greater challenges. Here we demonstrate the formation of a syndiotactic organic polymer ligand inside a MOF by quantitative [2+2] photopolymerization reaction in a single‐crystal‐to‐single‐crystal manner. The spacer ligands with trans,trans,trans‐conformation in the pillared‐layer MOF with guest water molecules in the channels, undergo pedal motion to trans,cis,trans‐conformation prior to [2+2] photo‐cycloaddition reaction and yield single crystals of MOF containing two‐dimensional coordination polymers fused with the organic polymer ligands. We also show that the organic polymer in the single crystals can be depolymerized reversibly by cleaving the cyclobutane rings upon heating. These MOFs also show interesting photoluminescent properties and sensing of small organic molecules.  相似文献   

17.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective.  相似文献   

18.
N‐Alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra‐ and intermolecular hydrogen bonds that leads to cavitand‐like structures. Depending on the upper‐rim substituents, self‐inclusion was observed in solution and in the solid state. The self‐inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self‐included dimers spontaneously reorganize to 1:1 host–guest complexes. These host compounds show an interesting ability to bind a series of N‐alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C?O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl?) and ammonium (NH2+) cations of the hosts, and also through CH ??? π interactions between the hosts and guests. The self‐included and host–guest complexes were studied by single‐crystal X‐ray diffraction, NMR titration, and mass spectrometry.  相似文献   

19.
Selectively capturing toxic oxoanions of selenium and arsenic is highly desired for the remediation of hazardous waste. Ionic metal–organic frameworks (iMOFs) especially cationic MOFs (iMOF‐C) as ion‐exchange materials, featuring aqueous phase stability, present a robust pathway for sequestration of the oxoanions owing to their ability to prevent leaching because of their ionic nature. On account of scarcity of water‐stable cationic MOFs, the capture of oxoanions of selenium and arsenic has been a major challenge and has not been investigated using iMOFs. Herein, we demonstrate large scale synthesis of cationic MOF, viz. iMOF‐1C that exhibits selective capture of oxoanions of SeVI (SeO42?) and AsV (HAsO42?) in water with a maximum sorption capacity of 100 and 85 mg g?1, respectively. This represents among the highest uptake capacities observed for selenate oxoanion in MOFs. Further, the ion‐exchange mechanism was directly unveiled by single crystal analysis, which revealed variable modes of host–guest binding.  相似文献   

20.
A strategy for in situ fabrication of nanoscale‐thin layers of anatase TiO2 coated on the metal–organic framework (MOF) material, MIL‐53(Al), is developed. The preparation conditions for crystallized TiO2 are normally incompatible with the thermal and chemical stability of MOFs. Based on our strategy, we found that the redundant organic ligands (1,4‐benzenedicarboxylic acid, H2BDC) within the pores of the as‐synthesized MOF play a key function in the protection and support of the framework during hydrothermal loading of the TiO2 precursor, as well as in preventing the infiltration of the precursor into the pores. After annealing, a nanoscale‐thin layer of highly crystalline anatase TiO2, with a thickness of 6–10 nm, was successfully attached to the external surface of the MIL‐53(Al) crystals, while the porous framework remains intact. The core–shell structure of the MOF@TiO2 nanocomposite endows the resulting materials with additional optical response and enhanced moisture and chemical stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号