首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nucleosomes carry extensive post‐translational modifications (PTMs), which results in complex modification patterns that are involved in epigenetic signaling. Although two copies of each histone coexist in a nucleosome, they may not carry the same PTMs and are often differently modified (asymmetric). In bivalent domains, a chromatin signature prevalent in embryonic stem cells (ESCs), namely H3 methylated at lysine 4 (H3K4me3), coexists with H3K27me3 in asymmetric nucleosomes. We report a general, modular, and traceless method for producing asymmetrically modified nucleosomes. We further show that in bivalent nucleosomes, H3K4me3 inhibits the activity of the H3K27‐specific lysine methyltransferase (KMT) polycomb repressive complex 2 (PRC2) solely on the same histone tail, whereas H3K27me3 stimulates PRC2 activity across tails, thereby partially overriding the H3K4me3‐mediated repressive effect. To maintain bivalent domains in ESCs, PRC2 activity must thus be locally restricted or reversed.  相似文献   

2.
3.
4.
Targeting defined histone protein sites in chromatin is an emerging therapeutic approach that can potentially be enhanced by allosteric effects within the nucleosome. Here we characterized a novel hetero‐bimetallic compound with a design based on a nucleosomal allostery effect observed earlier for two unrelated drugs—the RuII antimetastasis/antitumor RAPTA‐T and the AuI anti‐arthritic auranofin. The RuII moiety binds specifically to two H2A glutamate residues on the nucleosome acidic patch, allosterically triggering a cascade of structural changes that promote binding of the AuI moiety to selective histidine residues on H3, resulting in cross‐linking sites that are over 35 Å distant. By tethering the H2A‐H2B dimers to the H3‐H4 tetramer, the hetero‐bimetallic compound significantly increases stability of the nucleosome, illustrating its utility as a site‐selective cross‐linking agent.  相似文献   

5.
Wu B  Davey CA 《Chemistry & biology》2008,15(10):1023-1028
Nucleosome positioning and reorganization regulate DNA site exposure in chromatin. Platinum anticancer agents form DNA adducts that disrupt nuclear activities, triggering apoptosis. Mechanistic insight would aid in the development of improved therapies to circumvent drug toxicity and resistance. We show that platinum adducts formed by reaction of cisplatin or oxaliplatin with the nucleosome core inhibit histone octamer-DNA sliding but do not cause significant alteration of positioning. Thus, adduct formation reinforces positional preferences intrinsic to the DNA sequence, which indicates that modulation of platinum drug site selectivity by histone octamer association may relate to nucleosome-specific properties of DNA. This sheds light on platinum drug-mediated inhibition of chromatin remodeling in vivo and suggests that adducts can shield their own repair and interfere with genomic activities by directly altering nucleosome dynamics.  相似文献   

6.
7.
陈英  张锴  何锡文  张玉奎 《化学进展》2010,22(4):713-719
组蛋白是真核细胞中构成染色质内核小体的主要元件,其翻译后修饰蕴藏着组蛋白密码,是表观遗传学的重要内容,影响染色质的结构和功能,进而调控基因表达。组蛋白翻译后修饰形式的鉴定是揭示组蛋白密码的关键,目前质谱技术已经成为分析组蛋白及其翻译后修饰的重要工具。本文综述了组蛋白翻译后修饰鉴定方法的新进展,介绍了基于质谱技术“bottom up”和“top down”的组蛋白分析策略,及CID、ECD和ETD等鉴定组蛋白修饰位点的质谱碎片裂解技术,并结合当前研究进展,评述了质谱技术在组蛋白翻译后修饰谱的鉴定、组蛋白各种变体的测定、以及在生理过程中组蛋白修饰丰度动态变化的定量分析等方面应用的新进展。  相似文献   

8.
Chromatin signaling relies on a plethora of posttranslational modifications (PTM) of the histone proteins which package the long DNA molecules of our cells in reoccurring units of nucleosomes. Determining the biological function and molecular working mechanisms of different patterns of histone PTMs requires access to various chromatin substrates of defined modification status. Traditionally, these are achieved by individual reconstitution of single nucleosomes or arrays of nucleosomes in conjunction with modified histones produced by means of chemical biology. Here, we report an alternative strategy for establishing a library of differentially modified nucleosomes that bypasses the need for many individual syntheses, purification and assembly reactions by installing modified histone tails on ligation-ready, immobilized nucleosomes reconstituted in a single batch. Using the ligation-ready nucleosome strategy with sortase-mediated ligation for histone H3 and intein splicing for histone H2A, we generated libraries of up to 280 individually modified nucleosomes in 96-well plate format. Screening these libraries for the effects of patterns of PTMs onto the recruitment of a well-known chromatin factor, HP1 revealed a previously unknown long-range cross-talk between two modifications. H3S28 phosphorylation enhances recruitment of the HP1 protein to the H3K9 methylated H3-tail only in nucleosomal context. Detailed structural analysis by NMR measurements implies negative charges at position 28 to increase nucleosomal H3-tail dynamics and flexibility. Our work shows that ligation-ready nucleosomes enable unprecedented access to the ample space and complexity of histone modification patterns for the discovery and dissection of chromatin regulatory principles.

280 different patterns of histone modifications were installed in preassembled nucleosomes using PTS and SML enabling screening of readout crosstalk.  相似文献   

9.
Eukaryotic chromatin structure and dynamics play key roles in genomic regulation. In the current study, the secondary structure and intramolecular dynamics of human histone H4 (hH4) in the nucleosome core particle (NCP) and in a nucleosome array are determined by solid‐state NMR (SSNMR). Secondary structure elements are successfully localized in the hH4 in the NCP precipitated with Mg2+. In particular, dynamics on nanosecond to microsecond and microsecond to millisecond timescales are elucidated, revealing diverse internal motions in the hH4 protein. Relatively higher flexibility is observed for residues participating in the regulation of chromatin mobility and DNA accessibility. Furthermore, our study reveals that hH4 in the nucleosome array adopts the same structure and show similar internal dynamics as that in the NCP assembly while exhibiting relatively restricted motions in several regions consisting of residues in the N‐terminus, Loop 1, and the α3 helix region.  相似文献   

10.
Polycomb Polycomb repressive complex 2 (PRC2) plays a key role in silencing epigenetic gene through trimethylation of lysine 27 on histone 3 (H3K27). Dysregulations of PRC2 caused by overexpression and mutations of the core subunits of PRC2 have been implicated in many cancers. The core subunits EZH1/2 are histone-lysine N-methyltransferases that function as the enzymatic component of PRC2. While the core subunit EED is a scaffolding protein to support EZH1/2 and binds JARID2K116me3/H3K27me3 to enhance the enzymatic activity of PRC2 through allosteric activation. Recently, several small molecules that compete with JARI2K116me3 and H3K27me3 have been reported. These molecules selectively bind to the JARID2K116me3/H3K27me3-binding pocket of EED, thereby preventing the allosteric regulation of PRC2. These first-in-class PRC2 inhibitors show robust suppression in DLBCL cell lines, demonstrating anticancer drugs that target the EED subunit of PRC2 are viable. In this study, we used the recently developed MM/GBSA_IE and the alanine scanning method to analyze the hot spots in EED/inhibitor interactions. The analysis of these hot and warm spots helps us to understand the fundamental differences between inhibitors. Our results give a quantitative explanation on why the binding affinities of EED/A-395 interactions are stronger than that of EED/EED226 while their binding modes are similar and provide valuable insights for rational design of novel EED inhibitors.  相似文献   

11.
Cisplatin and carboplatin are used successfully to treat various types of cancer. The drugs target the nucleosomes of cancer cells and form intrastrand DNA cross-links that are located in the major groove. We constructed two site-specifically modified nucleosomes containing defined intrastrand cis-{Pt(NH3)2}(2+) 1,3-d(GpTpG) cross-links. Histones from HeLa-S3 cancer cells were transferred onto synthetic DNA duplexes having nucleosome positioning sequences. The structures of these complexes were investigated by hydroxyl radical footprinting. Employing nucleosome positioning sequences allowed us to quantify the structural deviation induced by the cisplatin adduct. Our experiments demonstrate that a platinum cross-link locally overrides the rotational setting predefined in the nucleosome positioning sequence such that the lesion faces toward the histone core. Identical results were obtained for two DNA duplexes in which the sites of platination differed by approximately half a helical turn. Additionally, we determined that cisplatin unwinds nucleosomal DNA globally by approximately 24 degree. The intrastrand cis-{Pt(NH3)2}(2+) 1,3-d(GpTpG) cross-links are located in an area of the nucleosome that contains locally overwound DNA in undamaged reference nucleosomes. Because most nucleosome positions in vivo are defined by the intrinsic DNA sequence, the ability of cisplatin to influence the structure of these positioned nucleosomes may be of physiological relevance.  相似文献   

12.
13.
The packing of DNA is described using the formalism of differential geometry. Winding of the DNA double helix around the histone 2-5 octamer forming a nucleosome and the condensation of the so-formed bead-on-a-string chromatine aided by histone 1 is interpreted as two consecutive isometric, i.e. Bonnet, transformations. The DNA double helix can be approximated to a helicoid which can be transformed isometrically to a catenoid, an approximation of the nucleosome. Owing to the organization of the histone octamer the extended chromatine takes a helicoidal shape allowing a second Bonnet transformation to consummate the condensation into a chromatine fibre.  相似文献   

14.
15.
Eukaryotic genomic DNA is packed into chromatin, whose fundamental structural unit is the nucleosome. As DNA-histone protein complexes, nucleosomes show different properties toward exogenous and endogenous DNA-damaging agents. This review summarizes nucleosome DNA damage due to different sources, including alkylating agents, radicals, UV radiation and reactive DNA damage intermediates. In most cases, the histone core protects the associated DNA against damage via its structure and/or scavenging of damaging agents. In contrast, histones react with damaged DNA and, in some instances, catalyze DNA damage in the nucleosome. The biological consequence of nucleosome DNA damage and future prospects in this field are briefly discussed.  相似文献   

16.
染色质高级结构在基因调控中起到不可忽视的作用,染色质结构的形成与调控机制受到广泛关注。"相分离"理论近年来受到较多关注,异染色质与转录因子在其中的作用引人瞩目。但是,目前的相分离模型更关注结合因子与表观遗传性质,对DNA序列自身的作用理解尚较不充分。许多物种基因组的序列分布均具有多尺度的不均一性,仅基于Cp G岛(Cp G island,CGI)密度差异这一序列性质,就可以划分出基因、表观遗传、结构和转录性质都截然不同的高CGI密度"森林"和低CGI密度"草原"两种序列区域,体现了基因组自身的马赛克性。本文聚焦染色质结构的序列依赖性,讨论了染色质结构模型的研究进展,关注在序列几乎相同的不同细胞类型中的序列–结构关系及其功能调控,对发育、分化、衰老、疾病等多种过程的染色质结构变化进行了系统分析。针对基于序列的染色质相分离模型,对其物理驱动力进行了讨论,并在该模型的框架下基于相分离的物理特性,对温度、序列不均一性等物理因素对染色质结构可能造成的影响进行了探讨。  相似文献   

17.
Coarse-grained models are used to assess the packing of the 30-nm chromatin fiber. First, rigid assembly models for nucleosomal repeats from 155 to 211 bp are built using the crystal structure of the mononucleosome and attached straight stretches of B-DNA. The resulting fiber conformations are analyzed for static clashes and classified into stable and unstable structures. The effect of flexibility and thermal fluctuations is then taken into account by conducting Monte Carlo simulations of chromatin fiber models. Here the DNA is approximated by a flexible polymer chain with Debye–Hückel electrostatics, the geometry of the linker DNA connecting the nucleosomes is based on a two-angle zigzag model, and nucleosomes are represented by flat ellipsoids interacting via an attractive Gay–Berne potential. Unstable fibers occur at a particular repeat length period of 10 bp. Also, the regions of densely compacted fibers repeat at intervals of 10 bp. Besides one- and two-start helical zigzag structures, we show evidence for possible three-start structures, which have not been reported in experiments yet. Finally, we show that a local opening of the linker DNA at the nucleosome core—as probably occurs upon histone acetylation—leads to more open and flexible structures.  相似文献   

18.
19.
O-GlcNAcylation has now been added to the growing list of histone modifications making up the multifaceted "histone-code" (Sakabe et?al., 2010). The sites of O-GlcNAc-histone modification hint at a role in chromatin remodeling, thus adding to mounting evidence that O-GlcNAc cycling sits atop a robust regulatory network maintaining higher-order chromatin structure and epigenetic memory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号