首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme‐mediated site‐specific bioconjugation of a radioactive metal complex to a single‐chain antibody using the transpeptidase sortase A is reported. Cage amine sarcophagine ligands that were designed to function as substrates for the sortase A mediated bioconjugation to antibodies were synthesized and enzymatically conjugated to a single‐chain variable fragment. The antibody fragment scFvanti‐LIBS targets ligand‐induced binding sites (LIBS) on the glycoprotein receptor GPIIb/IIIa, which is present on activated platelets. The immunoconjugates were radiolabeled with the positron‐emitting isotope 64Cu. The new radiolabeled conjugates were shown to bind selectively to activated platelets. The diagnostic potential of the most promising conjugate was demonstrated in an in vivo model of carotid artery thrombosis using positron emission tomography. This approach gives homogeneous products through site‐specific enzyme‐mediated conjugation and should be broadly applicable to other metal complexes and proteins.  相似文献   

2.
3.
4.
5.
6.
Dual‐labeled biomolecules constitute a new generation of bioconjugates with promising applications in therapy and diagnosis. Unfortunately, the development of these new families of biologics is hampered by the technical difficulties associated with their construction. In particular, the site specificity of the conjugation is critical as the number and position of payloads can have a dramatic impact on the pharmacokinetics of the bioconjugate. Herein, we introduce dichlorotetrazine as a trivalent platform for the selective double modification of proteins on cysteine residues. This strategy is applied to the dual labeling of albumin with a macrocyclic chelator for nuclear imaging and a fluorescent probe for fluorescence imaging.  相似文献   

7.
8.
9.
Click chemistry, a new strategy for organic chemistry, has been widely used in the chemical modification of calixarenes because of its reliability, specificity, biocompatibility, and efficiency. Click‐derived triazoles also play a critical role in sensing ions and molecules. This in‐depth review provides an overview of calixarene‐based chemosensors that incorporate click‐derived triazoles, and their three characteristics (chromogenic, fluorescence, and wettability) are reviewed.  相似文献   

10.
11.
A new zwitterionic organotrifluoroborate is appended to three radiosynthons that afford undergo facile bioconjugation to several clinically relevant peptides and one enzyme inhibitor. Molecularly complex bioconjugates are 18F‐labeled in a single aqueous step in rapid time (<15 min) without HPLC purification to afford tracers in good yields (>200 mCi, 20–40 %) at high specific activity (≥3 Ci/μmol) and at >98 % purity. PET imaging shows in vivo stability and tumor uptake.  相似文献   

12.
Covalent surface immobilization of proteins for binding assays is typically performed non‐specifically via lysine residues. However, receptors that either have lysines near their binding pockets, or whose presence at the sensor surface is electrostatically disfavoured, can be hard to probe. To overcome these limitations and to improve the homogeneity of surface functionalization, we adapted and optimized three different enzymatic coupling strategies (4′‐phosphopantetheinyl transferase, sortase A, and asparaginyl endopeptidase) for biolayer interferometry surface modification. All of these enzymes can be used to site‐specifically and covalently ligate proteins of interest via short recognition sequences. The enzymes function under mild conditions and thus immobilization does not affect the receptors’ functionality. We successfully employed this enzymatic surface functionalization approach to study the binding kinetics of two different receptor–ligand pairs.  相似文献   

13.
14.
Covalent surface immobilization of proteins for binding assays is typically performed non‐specifically via lysine residues. However, receptors that either have lysines near their binding pockets, or whose presence at the sensor surface is electrostatically disfavoured, can be hard to probe. To overcome these limitations and to improve the homogeneity of surface functionalization, we adapted and optimized three different enzymatic coupling strategies (4′‐phosphopantetheinyl transferase, sortase A, and asparaginyl endopeptidase) for biolayer interferometry surface modification. All of these enzymes can be used to site‐specifically and covalently ligate proteins of interest via short recognition sequences. The enzymes function under mild conditions and thus immobilization does not affect the receptors’ functionality. We successfully employed this enzymatic surface functionalization approach to study the binding kinetics of two different receptor–ligand pairs.  相似文献   

15.
16.
Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli . Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins.  相似文献   

17.
We report the regioselective Cu‐free click modification of styrene functionalized DNA with nitrile oxides. A series of modified oligodeoxynucleotides (nine base pairs) was prepared with increasing styrene density. 1,3‐Dipolar cycloaddition with nitrile oxides allows the high density functionalization of the styrene modified DNA directly on the DNA solid support and in solution. This click reaction proceeds smoothly even directly in the DNA synthesizer and gives exclusively 3,5‐disubstituted isoxazolines. Additionally, PCR products (300 and 900 base pairs) were synthesized with a styrene triphosphate and KOD XL polymerase. The click reaction on the highly modified PCR fragments allows functionalization of hundreds of styrene units on these large DNA fragments simultaneously. Even sequential Cu‐free and Cu‐catalyzed click reaction of PCR amplicons containing styrene and alkyne carrying nucleobases was achieved. This new approach towards high‐density functionalization of DNA is simple, modular, and efficient.  相似文献   

18.
19.
A series of functionalized porphyrin molecules containing electron‐rich alkynes, synthesized by means of the Sonogashira coupling reaction were further modified by reacting the ethynyl groups with click reagent through a formal [2+2] click reaction. The photophysical and electrochemical properties of the porphyrin derivatives were studied by UV/Vis spectroscopy and cyclic voltammetry. We show that the optoelectronic properties are affected by the click reagent groups and central metal ions. The functionalized porphyrin molecules show strong charge‐transfer (CT) bands in the visible region (near‐IR region) and potent redox activities. Through a phase‐exchange self‐assembly method, the highly organized morphologies were observed by scanning electron microscopy (SEM). The functionalized porphyrin molecules represent an interesting set of candidates for optoelectronic device components. The effect of the metal ions or click reagent groups on the self‐assembly properties were also studied by the UV/Vis spectroscopic titration experiments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号