首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A general enantioselective synthesis of functionalized nitrocyclopropanes by organocatalytic conjugate addition of a variety of bromonitroalkanes to α,β‐unsaturated enone systems is presented. The process, efficiently catalyzed by the salts of 9‐amino‐9‐deoxyepiquinine 1 d serves as a powerful approach to the preparation of synthetically and biologically important cyclopropanes with high levels of enantio‐ and diastereoselectivities. Since only 0.6 equivalents of bromonitromethane are used as a reagent, (S)‐ 2 e is obtained enantiomerically pure by employing chiral 1 d as a highly efficient catalyst for its kinetic resolution (97 % ee at 51 % conversion, selectivity s=120).  相似文献   

2.
The organocatalytic enantioselective conjugate addition of secondary β‐ketoamides to α,β‐unsaturated carbonyl compounds is reported. Use of bifunctional Takemoto’s thiourea catalyst allows enantiocontrol of the reaction leading either to simple Michael adducts or spirocyclic aminals in up to 99 % ee. The origin of the enantioselectivity has been rationalised based on combined DFT calculations and kinetic analysis. This study provides a deeper understanding of the reaction mechanism, which involves a predominant role of the secondary amide proton, and clarifies the complex interactions occurring between substrates and the catalyst.  相似文献   

3.
4.
5.
An enantioselective desymmetric nucleophilic α‐addition of cyclohexanone to propiolamide has been developed through a 6‐exo‐dig cyclization reaction. By employing simple and readily available L‐proline sodium salt as a bifunctional catalyst, a series of chiral 6,6‐bicyclic bridged products bearing morphan scaffold have been isolated in good yields and excellent enantioselectivities. Density functional theory (DFT) calculations elucidated the origins of the enantioselectivity and regioselectivity of this transformation. A salt bridge that links the amide carbonyl group with proline carboxylate in the transition state was proven to be the driving force for the induction of excellent enantioselectivity.  相似文献   

6.
7.
8.
Conjugated N‐acyl pyrazoles have been successfully employed in the organocatalytic enantioselective intramolecular aza‐Michael reaction as ester surrogates. Bifunctional squaramides under microwave irradiation provided the best results in this transformation. Furthermore, this protocol has been combined with a peptide‐coupling reaction in a tandem sequence. The final products were easily converted into the corresponding ethyl esters.  相似文献   

9.
A highly enantioselective Michael addition of nitroacetates to β,γ‐unsaturated α‐ketoesters was developed by using chiral copper catalysts. The Michael addition products can be obtained in high yields with up to 99 % ee. With these densely functionalized products, the chiral cyclic nitrones, which are important synthetic intermediates, can be obtained in one step.  相似文献   

10.
11.
Medium‐sized lactams are important structural motifs found in a variety of bioactive compounds and natural products but are challenging to prepare, especially in optically active form. A Michael addition/proton transfer/lactamization organocascade process is described that delivers medium‐sized lactams, including azepanones, benzazepinones, azocanones, and benzazocinones, in high enantiopurity through the intermediacy of chiral α,β‐unsaturated acylammonium salts. An unexpected indoline synthesis was also uncovered, and the benzazocinone skeleton was transformed into other complex heterocyclic derivatives, including spiroglutarimides, isoquinolinones, and δ‐lactones.  相似文献   

12.
An asymmetric doubly vinylogous Michael addition (DVMA) of α,β‐unsaturated γ‐butyrolactams to sterically congested β‐substituted cyclic dienones with high site‐, diastereo‐, and enantioselectivity has been achieved. An unprecedented DVMA/vinylogous Michael addition/isomerization cascade reaction affords chiral fused tricyclic γ‐lactams with four newly formed stereocenters.  相似文献   

13.
A highly diastereo‐ and enantioselective cyclopropanation of β,γ‐unsaturated α‐ketoesters with bromonitromethane has been successfully developed through a domino Michael‐addition/intramolecular‐alkylation strategy. Acceptable yields (up to 89 %) and enantioselectivities (up to 96 % ee) have been obtained.  相似文献   

14.
15.
16.
The first highly enantioselective phosphonylation of α,β‐unsaturated N‐acylpyrroles has been developed. Excellent yields (91–99 %) and enantioselectivities (up to >99 % enantiomeric excess (ee)) were observed for a broad spectrum of both phosphites and N‐acylpyrroles under mild conditions. In particular, when diethyl phosphite was employed to test the scope of the N‐acylpyrroles, almost optically pure products (98 to >99 % ee) were obtained for 20 examples of N‐acylpyrroles. Moreover, optically pure α‐substituted β‐ or γ‐amino phosphonates can be obtained by several simple transformations of the pyrrolyl phosphonates. The versatility of the N‐acylpyrrole moiety makes the phosphorus adducts powerful chiral building blocks that enable the synthesis of various phosphonate‐containing compounds. Finally, the present strategy can also be applied to the asymmetric hydrophosphonylation of N‐acylimines with high enantioselectivities (93 to >99 % ee).  相似文献   

17.
Panacea for aldol desymmetrizations : We describe an easy entry for the desymmetrization of 4‐substituted‐cyclohexanones catalyzed by proline, using as cocatalysts different hydrogen‐bonding donors (see scheme), which dramatically improves the catalytic efficiency of proline in desymmetrization reactions.

  相似文献   


18.
The asymmetric Michael reaction of nitroalkanes and β,β‐disubstituted α,β‐unsaturated aldehydes was catalyzed by diphenylprolinol silyl ether to afford 1,4‐addition products with an all‐carbon quaternary stereogenic center with excellent enantioselectivity. The reaction is general for β‐substituents such as β‐aryl and β‐alkyl groups, and both nitromethane and nitroethane can be employed. The addition of nitroethane is considered a synthetic equivalent of the asymmetric Michael reaction of ethyl and acetyl substituents by means of radical denitration and Nef reaction, respectively. The short asymmetric synthesis of (S)‐ethosuximide with a quaternary carbon center was accomplished by using the present asymmetric Michael reaction as the key step. The reaction mechanism that involves the E/Z isomerization of α,β‐unsaturated aldehydes, the retro‐Michael reaction, and the different reactivity between nitromethane and nitroethane is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号