首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stablen-hexadecane/water andn-tetradecane/water macroemulsions containing monolayers of natural (egg yolk lecithin, EY) and synthetic (dimyristoylphosphatidylcholine, DMPC) phospholipids at liquid-liquid interfaces were prepared. The existence of the monolayers was proved by studying the reduction kinetics of a surface-active spin probe with ascorbate anions. Spin labeled derivatives of stearic acid in which the nitroxide group is locared at different distances from the polar head (5-, 12-, and 16-doxylstearic acids) were used to study the temperature dependences of the molecular ordering, rotational mobility, and local polarity in the monolayers in emulsions and also in bilayers in liposomes obtained from the same lipids. In the EY monolayers, the degree of spin probe solubilization is higher, while the order parameters (S) and rotational correlation times (τ) are lower than those in EY bilayers. The differences between these parameters for mono- and bilayers increase with an increase in the distance of the reporter group from the aqueous phase. In the DMPC monolayers, a first-order phase transition was detected by measuring the temperature dependences ofS and τ. The temperature region of the phase transition in monolayers is shifted to lower temperatures with respect to that for bilayers and depends on the nature of the oil phase. It was concluded that the phospholipid monolayers in emulsions incorporate hydrocarbon molecules, whose concentration in the DMPC monolayers increases on going from the low-temperature (gel) to the high-temperature (liquid crystal) phase. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 418–425, March, 1998.  相似文献   

2.
3.
Interactions between surfactants, and the resultant ordering of surfactant assemblies, can be tuned by the appropriate choice of head- and tailgroups. Detailed studies of the ordering of monolayers of long-chain n-alkanoic and n-alkanol monolayers at the water-vapor interface have demonstrated that rigid-rod all-trans ordering of the tailgroups is maintained upon replacing the alcohol with a carboxylic acid headgroup. In contrast, at the water-hexane liquid-liquid interface, we demonstrate that substitution of the -CH(2)OH with the -COOH headgroup produces a major conformational change of the tailgroup from disordered to ordered. This is demonstrated by the electron density profiles of triacontanol (CH(3)(CH(2))(29)OH) and triacontanoic acid (CH(3)(CH(2))(28)COOH) monolayers at the water-hexane interface, as determined by X-ray reflectivity measurements. Molecular dynamics simulations illustrate the presence of hydrogen bonding between the triacontanoic acid headgroups that is likely responsible for the tail ordering. A simple free energy illustrates the interplay between the attractive hydrogen bonding and the ordering of the tailgroup.  相似文献   

4.
The adsorption behavior and the phase transition of alkanol and fluoroalkanol at the electrified mercury/aqueous solution interface were investigated by the interfacial tension measurements and the thermodynamic analysis. In the alkanol system, it is found that the phase transitions in low interfacial densities occur: the ones from the zero adsorption to the gaseous or the expanded state and the gaseous to the expanded state at the electrified interface depending on the electrostatic nature as well as the concentration in the bulk phase. These phase transitions were verified by the thermodynamic equations derived by the assumption of coexistence of two phases at the electrified interface. Furthermore the distribution of ionic species in the interfacial region is discussed on the basis of dependence of the interfacial charge density of solution phase on an applied potential. Fluoroalkanol, on the other hand, was practically not adsorbed at the electrified interface within this experimental condition. The zero adsorption of fluoroalkanol molecules suggests the driving force of the adsorption may be the interaction hydrophobic group of alcohol molecule and mercury.  相似文献   

5.
The effect of temperature on the surface phase behavior in Langmuir monolayers of monomyristoyl-rac-glycerol (MMG) at the air-water interface has been studied by film balance and Brewster angle microscopy (BAM). It is observed that the domains of the MMG monolayers formed in the coexistence region between the liquid expanded (LE) and liquid condensed (LC) phases retain their circular shape over the studied temperature range, showing a sharp contrast to the temperature-dependent monolayer morphologies of amphiphilic systems where the shape of condensed domains changes either from compact circular to fingering or from irregular or spiral to compact patterns with increasing temperature. It is concluded that the system is capable of tuning the line tension of the interface by the effect of the increase in the hydrophobic character because of dehydration of the headgroup, which imparts to the molecules the properties of similar molecules but with less hydrophilic headgroups. As a result, the domains can retain their circular shape even up to the maximum possible temperature of the phase transition.  相似文献   

6.
Surface phase behavior of di-n-tetradecyl hydrogen phosphate, DTP, has been studied by measuring pi-A isotherms with a film balance and observing monolayer morphology with a Brewster angle microscopy (BAM) at different temperatures. A generalized phase diagram, which shows a triple point for gas (G), liquid-expanded (LE) and liquid-condensed (LC) phases at about 32 degrees C, is constructed for the amphiphile. Below the triple point, a first-order G-LC phase transition has been shown to occur, whereas a first-order G-LE phase transition followed by another first-order LE-LC transition has been found to take place at a temperature above the triple point. The amphiphile shows the fingering LC domains with uniform brightness indicating the presence of untilted molecules. The domain shapes are independent of the change in temperature and compression rate. The existence of similar fingering domains over a wide range of temperature is rather uncommon in the monolayer systems and is considered to be due to the restricted movement of the molecules incorporating into the LC phase. Because the two-alkyl chains are directly attached to two covalent bonds of the phosphate head group, the rearrangement of the molecules, which is an essential condition for the circular domain formation, needs the movement of the whole molecules including the hydration sphere. The difficulty related to such a movement of the molecules causes fingering domains, which are independent of external variables.  相似文献   

7.
Vibrational sum frequency generation (SFG) spectroscopy was applied to study the phase transitions of the mixed monolayers of l-alpha-distearoyl phosphatidylethanolamine (DSPE) and DSPE covalently coupled with poly(ethylene oxide) at the amino head group (DSPE-EO(45), DSPE with 45 ethylene oxide monomers) at the air-water interface. The SFG spectra were measured for the mixed monolayers with the mole fractions of DSPE-EO(45) of 0, 1.3, 4.5, 9.0, 12.5, and 16.7% at the surface pressures of 5, 15, and 35 mN/m. The monolayer compression isotherms indicated that the mixed monolayers at 5, 15, are 35 mN/m are mainly in the so-called "pancake", "mushroom", and "brush" states, respectively. The SFG spectra in the OH stretching vibration region give rise to SFG bands near 3200 and 3400 cm(-1). The mean molecular amplitude of the former band due to the OH stretching of the "icelike" water molecules associated mainly with the hydrophilic poly(ethylene oxide) (PEO) chains, exhibits appreciable decrease on compression of the mixed monolayers from 5 to 15 mN/m. The result corroborates the model for the pancake-mushroom transition, which presumes the dissolution of the PEO chains from the air-water interface to the water subphase. Further compression of the mixed monolayers to 35 mN/m causes a slight decrease of the line amplitude, which can be explained by considering a squeezing out of water molecules from the hydrophilic groups of DSPE-EO(45) in the brush state, where the PEO chains strongly interact with each other to form a tight binding state of the hydrophilic groups. The relative intensities of the SFG bands due to the CH3 asymmetric and symmetric vibrations were used to estimate the tilt angles of the terminal methyl group of DSPE, indicating that the angle increases with increasing the mole fraction of DSPE-EO(45). The angles almost saturate at the mole fraction larger than 10%, the saturation angle being nearly 90 degrees at 5 mN/m, ca. 60 degrees at 15 mN/m, and ca. 47 degrees at 35 mN/ m. Then, the introduction of the hydrophilic PEO head group causes a large tilting of the alkyl groups of DEPE in the mixed monolayers.  相似文献   

8.
The dielectric constant in many insulating magnets exhibits pronounced changes at magnetic ordering temperatures or with the application of external magnetic fields. As the dielectric response is sensitive to materials properties at non-zero wavevectors, dielectric spectroscopy provides additional insight into spin structures in these insulators beyond what can be determined using bulk magnetization measurements alone. We present illustrative examples of intrinsic magnetodielectric coupling in non-polar ferro- and antiferromagnets, SeCuO3 and TeCuO3 respectively, and of magnetodielectric coupling in a polar system, specifically Ni3V2O8. We also show an example of how spurious magnetocapacitive effects can significantly modify the magnetodielectric response of a system. We include with some general comments on how the magnetodielectrics may be useful for device applications and how the coupling may be enhanced by modifying the materials.  相似文献   

9.
The surface phase behavior of condensed-phase domains formed during a first-order phase transition in Langmuir monolayers of diethylene glycol mono-n-hexadecyl ether at the air-water interface has been investigated by Brewster angle microscopy and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). A variety of two-dimensional (2D) structures are observed just after the appearance of the phase transition at different temperatures. At 10 and 15 degrees C, the domains are found to be small nuclei of irregular structures. Spiral structures are observed at 20 and 22 degrees C, while striplike structures at 24 degrees C. The spiral domains attain increasingly compact shape with increasing temperature, and finally become circular at >or=26 degrees C. Increases in temperature result in dehydration in the ethylene oxide chain, which increases the hydrophobicity, and impart to the molecules a longer-chain-like character. As a result line tension increases with increasing temperature, which probably outweighs the dipole-dipole repulsions showing circular domains at higher temperatures. The PM-IRRAS measurement reveals that the nu(as)(CH(2)) mode moves to lower wave numbers indicating that the LE-LC (liquid expanded-liquid condensed) phase transition during the compression of the monolayer involves changes in the conformational order of the molecules with a preferential increase in the planner trans zigzag conformation of the hydrocarbon chains. The nu(as)(CH(2)) mode in the LC region of the isotherm shows a constant value around 2917.8 cm(-1) indicating a stable state of the monolayer with an almost all-trans conformation of the hydrocarbon chains. The downward band at 1124 cm(-1) assigned to the nu(as)(C-O-C) mode indicates that the corresponding transition dipole moment is oriented perpendicular to the water surface.  相似文献   

10.
Molecular recognition of mixed nucleolipids of 1-(2-octadecyloxycarbonylethyl)cytosine and 7-(2-octadecyloxycarbonylethyl)guanine in the monolayers at the air-water interface and Langmuir-Blodgett (LB) films has been investigated in detail using surface pressure/potential-area isotherms, infrared reflection-absorption spectroscopy (IRRAS), and Fourier transform infrared (FTIR) transmission spectroscopy, respectively. Prior to molecular recognition, the cytosine moieties in the monolayer were hydrogen bonded with an almost flat-on orientation, the alkyl chains were uniaxially oriented with respect to the film normal, the guanine moieties in the monolayer were stacked probably through pi-pi interaction with an end-on orientation, and the C-C-C planes of the alkyl chains were preferentially oriented parallel to the water surface. In the monolayer of equimolar mixture, molecular recognition between the cytosine and guanine moieties occurred together with the ring planes of base pairing and the C-C-C planes of the alkyl chains favorably oriented parallel to the water surface. The guanine moieties underwent an orientation change from an end-on mode before molecular recognition to a flat-on one after molecular recognition. The base pairing between the cytosine and guanine moieties in the monolayers was achieved since the N7-substituted guanine derivatives suppressed the formation of guanine tetramers. Both the IRRAS spectra of the monolayers and the FTIR spectra of the LB films presented the exact sites in the cytosine and guanine moieties for the formation of triple hydrogen bonds. The base pairing resulted in a change in molecular orientation and interaction, and the corresponding LB film exhibited a different phase transition behavior from a typical crystal transition for the cytosine-functionalized nucleolipids and an analogous glass transition for the guanine-functionalized nucleolipids. The thermal stability of the mixed LB film was improved in comparison to the LB films of pure components.  相似文献   

11.
Crystalline monolayers of octadecylsulfonate amphiphiles (C18S) separated by hydrophilic guanidinium (G) spacer molecules were formed at the air-water interface at a surface coverage that was consistent with that expected for a fully condensed monolayer self-assembled by hydrogen bonding between the G ions and the sulfonate groups. The surface pressure-area isotherms reflected reinforcement of this monolayer by hydrogen bonding between the G ions and the sulfonate groups, and grazing incidence X-ray diffraction (GIXD) measurements, performed in-situ at the air-water interface, revealed substantial tilt of the alkyl hydrophobes (t = 49 degrees with respect to the surface normal), which allowed the close packing of the C18 chains needed for a stable crystalline monolayer. This property contrasts with behavior observed previously for monolayers of hexadecylbiphenylsulfonate (C16BPS) and G, which only formed crystallites upon compression, accompanied by ejection of the G ions from the air-water interface. Upon compression to higher surface pressures, GIXD revealed that the highly tilted (G)C18S monolayer crystallites transformed to a self-interdigitated (G)C18S crystalline multilayer accompanied by a new crystalline monolayer phase with slightly tilted alkyl chains and disordered sulfonate headgroups. This transformation was dependent on the rate of compression, suggesting kinetic limitations for the "zipper-like" transformation from the crystalline monolayer to the self-interdigitated (G)C18S crystalline multilayer.  相似文献   

12.
Time-domain representations of linear surface viscoelasticity are shown to be advantageous in the characterization of dynamic interface properties exhibited by petroleum and derivatives. General relationships are reported which allow time-representations to be analytically or numerically evaluated for any surface relaxation mechanism and for whatever form of the input surface area perturbation. Adopting the translational-diffusion model, an analytical expression is developed for describing the time evolution of the amplitude of surface tension rise and decay pertaining to a forcing tilted-step perturbation. By fitting this expression to experimental values, intrinsic surface properties can be determined. In addition to the technical interest, the theoretical treatment is also discussed in terms of its fundamental importance for the study of transport mechanisms at fluid-fluid interfaces as well as for the determination of thermodynamic equilibrium quantities.  相似文献   

13.
The formation mechanism of the shapes of condensed phase domains in monolayers at the air-water interface was investigated taking into account the surface pressure, line tension, and electrostatic energy due to the spontaneous polarization generated in normal and in-plane direction. By deriving the shape equation of monolayer domains as the mechanical balance at the domain boundary, we found that the electrostatic energy contributes to the shape equation as electrostatic Maxwell stress. Development of a cusp from condensed phase domains of fatty acid monolayers, which has been experimentally observed, was analyzed by the shape equation. It was found that the development of a cusp originated from the strong Maxwell stress, which was induced by the non-uniform orientational distribution in the fatty acid domain, and that cusped shapes gave a minimum of the free energy of the domain. It demonstrates that the shape equation with Maxwell stress, which is derived in the present study, is useful to study the formation mechanism of the shapes of condensed phase domains in monolayers.  相似文献   

14.
The intricate interplay between the bilayer and monolayer properties of phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) phospholipids, in relation to their polar headgroup properties, and the effects of chain permutations on those polar headgroup properties have been demonstrated for the first time with a set of time-independent bilayer-monolayer equilibria studies. Bilayer and monolayer phase behavior for PE is quite different than that observed for PC and PG. This difference is attributed to the characteristic biophysical PE polar headgroup property of favorable intermolecular hydrogen-bonding and electrostatic interactions in both the bilayer and monolayer states. This characteristic hydrogen-bonding ability of the PE polar headgroup is reflected in the condensed nature of PE monolayers and a decrease in equilibrium monolayer collapse pressure at temperatures below the monolayer critical temperature, T(c) (whether above or below the monolayer triple point temperature, T(t)). This interesting phenomena is compared to equilibrated PC and PG monolayers which collapse to form bilayers at 45 mN/m at temperatures both above and below monolayer T(c). Additionally, it has been demonstrated by measurements of the equilibrium spreading pressure, pie, that at temperatures above the bilayer main gel-to-liquid-crystalline phase-transition temperature, T(m), all liquid-crystalline phospholipid bilayers spread to form monolayers with pie around 45 mN/m, and spread liquid-expanded equilibrated monolayers collapse at 45 mN/m to form their respective thermodynamically stable liquid-crystalline bilayers. At temperatures below bilayer T(m), PC and PG gel bilayers exhibit a drop in bilayer pi(e) values < or =0.2 mN/m forming gaseous monolayers, whereas the value of pic of spread monolayers remains around 45 mN/m. This suggests that spread equilibrated PC and PG monolayers collapse to a metastable liquid-crystalline bilayer structure at temperatures below bilayer T(m) (where the thermodynamically stable bilayer liquid-crystalline phase does not exist) and with a surface pressure of 45 mN/m, a surface chemical property characteristically observed at temperatures above bilayer T(m) (monolayer T(c)). In contrast, PE gel bilayers, which exist at temperatures below bilayer T(m) but above bilayer T(s) (bilayer crystal-to-gel phase-transition temperature), exhibit gel bilayer spreading to form equilibrated monolayers with intermediate pie values in the range of 30-40 mN/m; however, bilayer pie and monolayer pic values remain equal in value to one another. Contrastingly, at temperatures below bilayer T(s), PE crystalline bilayers exhibit bilayer pie values < or =0.2 mN/m forming equilibrated gaseous monolayers, whereas spread monolayers collapse at a value of pic remaining around 30 mN/m, indicative of metastable gel bilayer formation.  相似文献   

15.
We present the adsorption kinetics and the surface phase behavior of water-soluble n-tetradecyl phosphate (n-TDP) at the air-water interface by film balance and Brewster angle microscopy (BAM). The relaxation of the surface pressure at about zero value in the surface pressure (pi)-time (t) adsorption isotherm is found to occur from 2 to 20 degrees C with appropriate concentrations of the amphiphile. These plateaus are accompanied by two surface phases, confirming that the relaxation of the surface pressure is caused by a first-order phase transition. Only this phase transition is observed at <6.5 degrees C and it is considered as a gas (G)-liquid condensed (LC) phase transition. Above 6.5 degrees C, the phase transition at zero surface pressure is followed by another phase transition, which is indicated by the presence of cusp points in the pi-t curves at different temperatures. Each of the cusp points is followed by a plateau, which is accompanied by two surface phases, indicating that the latter transitions are also first-order in nature. At >6.5 degrees C, the former transition is classified as a first-order G-liquid expanded (LE) phase transition, while the latter transition is grouped into a first-order LE-LC phase transition. The critical surface pressure (pi(c)) necessary for the G-LC and G-LE phase transitions is zero and remains constant all over the studied temperatures, whereas that for the LE-LC transition increases linearly with increasing temperature. Based on these results, we construct a rather elaborated phase diagram that shows that the triple point for Gibbs monolayers of n-TDP is 6.5 degrees C. All the results are consistent with the present understanding of the Langmuir monolayers of insoluble amphiphiles at the air-water interface.  相似文献   

16.
The surface behavior of monoacylated beta-cyclodextrins, with hydrocarbon chains of 16, 14, and 10 carbons, has been assessed by the measurement of the surface pressure, surface (dipole) potential, optical reflectivity, and surface topography in monolayers at the air-water interface. For all the derivatives studied, the intermolecular organization adopted along compression-decompression isotherms reveals a rich variety of packing states which imply profound reorganization of the hydrophobic and hydrophilic moieties of the beta-cyclodextrin derivatives in the film, depending on the lateral surface pressure. The intermolecular arrangements are consistent with the adoption of a different and defined orientation of the cyclic oligosaccharide unit, relative to the interfacial plane and the aqueous subphase. This is different from the behavior of the per-substituted derivatives, and none of the changes exhibited by the monosubstituted forms are consistent with the oligosaccharide ring remaining in a fixed orientation along the interface when the surface pressure is varied.  相似文献   

17.
A molecular theory of phase transitions in fatty acid monolayers at the air/water interface is proposed based on rotational ordering of molecules about their longitudinal axes. The first order statistical mechanical lattice model of Bell, Mingins, and Taylor (BMT ) which is an equilibrium diluted Ising model is used to describe the monolayer behavior of some simple aliphatic carboxylic acids. The interaction energy parameters in the BMT model are adjusted to give reasonable agreement with the experimentally observed chain length dependence, and the energies thus obtained are compared with those calculated for interacting aliphatic carboxylic acid dimers by the technique of perturbative configuration interaction using localized orbitals (PCILO ). It is concluded that intermolecular rotational ordering due to the anisotropy of the intermolecular potential plays a significant role in simple fatty acid monolayer phase behavior. A possible experimental test of the model is briefly described.  相似文献   

18.
The paper presents a thorough characteristics of Langmuir monolayers formed at the air/water interface by a polyene macrolide antibiotic-nystatin. The investigations are based on the analysis of pi/A isotherms recorded for monolayers formed by this antibiotic at different experimental conditions. A significant part of this work is devoted to the stability and relaxation phenomena. It has been found that nystatin forms at the air/water interface monolayers of the LE state. A plateau region, observed during the course of the isotherm compression, is suggested to be due to the orientational change of nystatin molecules from horizontal to vertical position. Quantitative analysis of the desorption of the monolayer material into bulk water indicates that the solubility of nystatin monolayers increases with surface pressure. At low surface pressures, the desorption of nystatin from a monolayer is controlled both by dissolution and by diffusion. However, at the plateau and in the post-plateau region, the desorption does not achieve a steady state and the monolayer is less stable than in the pre-plateau region. However, the presence of membrane lipids, even at a low mole fraction, considerably increases the stability of nystatin monolayers. This enables the application of the Langmuir monolayer technique to study nystatin in mixture with cellular membrane components, aiming at verifying its mode of action and the mechanism of toxicity.  相似文献   

19.
Summary The mixed monolayers of poly-alanine + stearyl alcohol and poly-alanine + cholesterol were studied at the air-water interface. In the mixed monolayers the surface pressure-area isotherms showed three collapse states. The first and the third collapse pressures were identical in magnitude with the collapse pressures of pure components. The intermediate collapse pressure in the poly-alanine + stearyl alcohol was found to be ca. 5 dyne/cm higher than that was observed in the poly-alanine + cholesterol system. Further, the mixed films in both systems were found to show no deviation from the ideality rule. The magnitude o f the intermediate collapse state is shown to be related to the van der Waals forces present in the lipid films.With 6 figures  相似文献   

20.
The conformational equilibria of the acetyl and methyl amide terminally blocked L-alanine, L-leucine and L-glutamine amino acids are examined in vacuum, in bulk water, and at the water-hexane interface, using multi-nanosecond molecular dynamics simulations. The two-dimensional probability distribution functions of finding the peptides at different dihedral angles of the backbone, phi and psi, are calculated, and free energy differences between different conformational states are determined. All three peptides are interfacially active, i.e. tend to accumulate at the interface even though they are not amphiphilic. Conformational states stable in both gas phase and water are also stable in the interfacial environment. Their populations, however, cannot be simply predicted from the knowledge of conformational equilibria in the bulk phases, indicating that the interface exerts a unique effect on the peptides. Conformational preferences in the interfacial environment arise from the interplay between electrostatic and hydrophobic effects. As in an aqueous solution, electrostatic solute-solvent interactions lead to the stabilization of more polar peptide conformations. The hydrophobic effect is manifested at the interface by a tendency to segregate polar and nonpolar moieties of the solute into the aqueous and the hexane phases, respectively. For the terminally blocked glutamine, this favors conformations for which such a segregation is compatible with the formation of strong, backbone-side chain intramolecular hydrogen bonds on the hexane side of the interface. The influence of the hydrophobic effect can be also noted in the orientational preferences of the peptides at the interface. The terminally blocked leucine is oriented such that its nonpolar side chain is buried in hexane, whereas the polar side chain of glutamine is immersed in water. The free energies of rotating the peptides along the axis parallel to the interface by more than 90 degrees are substantial. This indicates that peptide folding at interfaces is strong by driven by the tendency to adopt amphiphilic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号