首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
By using a quantum hydrodynamic (QHD) model, we derive a generalized dielectric constant for an unmagnetized quantum dusty plasma composed of electrons, ions, and charged dust particulates. Neglecting the electron inertial force in comparison with the electron pressure, and the force associated with the electron correlations at a quantum scale, we discuss two classes of electrostatic instabilities that are produced by streaming ions, and dust grains. The effects of the plasma streaming speeds, the thermal speed of electrons, and the quantum parameter are examined on the growth rates. The relevance of our investigation to dense astrophysical plasmas is discussed.  相似文献   

3.
Theoretical investigation has been made on two different ultra-low-frequency electrostatic modes, namely, dust-cyclotron mode and dust-lower-hybrid mode, propagating perpendicular to the external magnetic field, in a self-gravitating magnetized two-fluid dusty plasma system. It has been shown that the effect of the self-gravitational force, acting on both dust grains and ions, significantly modifies the dispersion properties of these two electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned.  相似文献   

4.
An investigation has been made of ion-acoustic solitary waves in an unmagnetized nonthermal plasma whose constituents are an inertial ion fluid and nonthermally distributed electrons. The properties of stationary solitary structures are briefly studied by the pseudo-potential approach, which is valid for arbitrary amplitude waves, and by the reductive perturbation method which is valid for small but finite amplitude limit. The time evolution of both compressive and rarefactive solitary waves, which are found to coexist in this nonthermal plasma model, is also examined by solving numerically the full set of fluid equations. The temporal behaviour of positive (compressive) solitary waves is found to be typical, i.e., the positive initial disturbance breaks up into a series of solitary waves with the largest in front. However, the behaviour of negative (rarefactive) solitary waves is quite different. These waves appear to be unstable and produce positive solitary waves at a later time. The relevancy of this investigation to observations in the magnetosphere of density depressions is briefly pointed out. Received 12 October 1999  相似文献   

5.
A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency electromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids) dusty plasma. These are modified Alfvén waves for small value of and are modified magnetosonic waves for large , where is the angle between the directions of the external magnetic field and the wave propagation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries (K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive perturbation method. The effects of external magnetic field and dust characteristics on the amplitude and the width of these solitary structures are examined. The implications of these results to some space and astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned. Received 8 July 1999 and Received in final form 11 October 1999  相似文献   

6.
Linear and nonlinear ion acoustic waves in the presence of adiabatically heated ions in magnetized electron-positron-ion plasmas are studied. The Sagdeev potential approach is employed to obtain the energy integral equation in such a mulitcomponent plasma using fluid theory. It is found that electron density humps are formed in the subsonic region in magnetized electron-positron-ion plasmas. The amplitude of electron density hump is decreased with the increase of hot ion temperature in electron-positron-ion plasmas. However, the increase in positron concentration and obliqueness of the wave increases the amplitude of nonlinear structure. The increase in positron concentration also reduces the width of the nonlinear structure in a magnetized multicomponent plasma. The numerical solutions in the form of solitary pulses are also presented for different plasma cases. The results may be applicable to astrophysical plasma situations, where magnetized electron-positron-ion plasma with hot ions can exist.  相似文献   

7.
Existence of large amplitude stationary solitary wave structures in an unmagnetized electron-positron (e-p) plasma is studied using a quantum hydrodynamic (QHD) model that includes the quantum force (tunnelling) associated with the Bohm potential and the Fermi-dirac pressure law. It is found that in a quasi-neutral pair (e-p) plasma, where the dispersion is only due to the the quantum tunnelling effects, the large amplitude stationary solitary structure exists only when the normalized Mach speed,M <√2. Such solitary structures do not exist in absence of the Bohm potential term in an unmagnetized quasineutral pair (e-p) plasma. The system is shown to support only rarefactive stationary solitary waves. For such waves the amplitude, being independent of the quantum parameter H (the ratio of the electron plasmon to electron Fermi energy), decreases with the Mach number M, whereas the width increases with both M and H. The present theory is applicable to analyze the formation of localized coherent solitary structures at quantum scales in dense astrophysical objects as well as in intense laser fields.  相似文献   

8.
Ion-acoustic envelope solitary waves in a very dense plasma comprised of the electrons, positrons and ions are investigated. For this purpose, the quantum hydrodynamic model and the Poisson equation are used. A modified nonlinear Schrödinger equation is derived by employing the reductive perturbation method. The effects of the quantum correction and of the positron density on the propagation and stability of the envelope solitary waves are examined. The nonplanar (cylindrical/spherical) geometry gives rise to an instability period. The latter cannot exist for planar case and it affected by the quantum parameters, as well as the positron density. The present investigation is relevant to white dwarfs.  相似文献   

9.
Both linear and nonlinear propagation of electrostatic solitary waves (ESWs) in magnetized electron-positron-ion (e-p-i) plasmas are analyzed. The electrons and positrons are assumed to be dynamic, whereas positively charged ions are considered stationary. Using the reductive perturbation method, a Zakharov-Kuznetsov (ZK) equation is derived and exact soliton solutions are presented. It is found that both compressive and rarefactive ESWs can propagate. The conditions of transitions from compressive to rarefactive ESWs are specified. The nature of these electrostatic solitary waves structures which depends on the magnetic field, the obliqueness, the ion-to-electron number density ratio, and the positron-to-electron temperature ratio, are discussed.  相似文献   

10.
Summary This paper presents an investigation of the growth of a radially symmetrical ripple, superimposed on a Gaussian laser beam in a collisionless magnetoplasma. The effect of the magnetic field and the intensity of the laser on the growth of the ripple is presented in some detail. The effect of the presence of the ripple on the excitation of an electron plasma wave is also investigated. Coupling of a weak plasma wave with the main laser beam is through the modified background density. The combined effect of increased intensity of the laser beam and magnetic field is observed to suppress the growth of the ripple as well as the excitation of the plasma wave. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   

11.
Summary In the framework of the hydrodynamic approximation, we study the Langmuir oscillations of an ion density ripple background plasma under the influence of a single external harmonic r.f. field. An analytic frequency response curve is derived for the late-time behaviour exhibiting multistability and hysteresis.  相似文献   

12.
Nonlinear dust acoustic solitary waves in a dusty plasma are studied for nonzero kinematic viscosity. Sagdeev’s potential can be obtain upto any order in ϕ. The existence of soliton solution is determined by pseudopotential approach. It is seen that the electron inertia has a significant effect on the existence of solitary waves in presence of kinematic viscosity.  相似文献   

13.
Effects of nonadiabaticity of variable dust charge, dust fluid temperature, trapped electrons as well as nonisothermality of ions on the amplitude modulation of dust acoustic waves in an unmagnetized dusty plasma are investigated. A modified nonlinear Schr?dinger equation (NLSE) is obtained by the standard reductive perturbation technique and is solved numerically by the split-step Fourier method. The modulational instability and the envelope solitary wave structure are found to be modified somewhat by the effects of nonthermally distributed ions and trapped electrons.  相似文献   

14.
The generation of zonal flows by flute-like interchange modes in a nonuniform magnetoplasma is considered. The guiding center particle drifts are then used to derive a system of coupled mode equations. The latter are Fourier analyzed to obtain a nonlinear dispersion relation, which exhibits the excitation of zonal flows by the ponderomotive force of the interchange modes. The growth rate of the parametrically driven zonal flows is obtained. Received 26 July 2002 Published online 24 September 2002 RID="a" ID="a"e-mail: ps@tp4.ruhr-uni-bochum.de  相似文献   

15.
A major limit to steady state and advanced high operation of tokamaks of reactor class is due to the onset of tearing modes that develop magnetic and may cause loss of energy confinement or a major disruption. Here the structure of a classical problem about the effects of external control helical fields is analysed and it is shown to offer a general paradigm of response of low order classical and neoclassical tearing modes to a wide class of external perturbations. New results of principle on the structural stability of the response model are obtained, leading to a clear interpretation of the role of “seed islands" in the onset of neo-classical tearing modes and the role of finite ion larmor radius corrections to Ohm's law. Received 12 November 2001 and Received in final form 4 January 2002  相似文献   

16.
Starting from the static Fukuyama-Lee-Rice equation for a three-dimensional incommensurate charge density wave (CDW) in quasi one-dimensional conductors a solvable model for local phase pinning by impurities is defined and studied. We find that average CDW energy and average pinning force show critical behaviour with respect to the pinning parameter h. Specifically the pinning force exhibits a threshold at h=1 with exponent . Our model exemplifies a general concept of local impurity pinning in which the force exerted by the impurity on the periodic CDW structure becomes multivalued and metastable states appear beyond a threshold. It is found that local impurity pinning becomes less effective at low temperatures and may eventually cease completely. These results are independent of spatial dimensionality as expected for local impurity pinning. Comparison with Larkin's model is also made. Received 8 July 1998  相似文献   

17.
Absorption of Alfvén waves is considered to be the main mechanism of heating in the solar corona. It is concluded that the sharp increase of the plasma temperature by two orders of magnitude is related to a self-induced opacity with respect to Alfvén waves. The maximal frequency for propagation of Alfvén waves is determined by the strongly temperature dependent kinematic viscosity. In such a way the temperature jump is due to absorption of high frequency Alfvén waves in a narrow layer above the solar surface. It is calculated the power per unit area dissipated in this layer due to damping of Alfvén waves that blows up the plasma and gives birth to the solar wind. A model short wave-length (WKB) evaluation takes into account the 1/f2 frequency dependence of the transversal magnetic field and velocity spectral densities. Such spectral densities agree with old magnetometric data taken by Voyager 1 and recent theoretical calculations in the framework of Langevin-Burgers MHD. The presented theory predicts existence of intensive high frequency MHD Alfvén waves in the cold layer beneath the corona. It is briefly discussed how this statement can be checked experimentally. It is demonstrated that the magnitude of the Alfvén waves generating random noise and the solar wind velocity can be expressed only in terms of satellite experimental data. It is advocated that investigation of properties of the solar surface as a random driver by optical methods is an important task for future solar physics.  相似文献   

18.
Stable auto-solitary solutions were found on the basis of three-dimensional numerical simulations within the simplest model under global constraint. The model involves a diffusion equation with a nonlinear source term containing both local and non-local nonlinearity. The source term was chosen so as to describe qualitatively the most fundamental peculiarities of discharge physics, namely local nonlinear increase in heating and ionization rate and non-local attenuation of electric field strength with plasma density growth. The properties of the autosolitons created by the model have been investigated employing the different parameters as control parameter. Therefore the results of calculations can be used to construct a process of plasma contraction in gas discharge. Received 26 July 1999 and Received in final form 5 February 2000  相似文献   

19.
We apply a non-perturbative procedure for the calculation of the total photoionization cross-section of two-electron atomic systems. The procedure is based on the Floquet-Fourier representation of the time-dependent Schr?dinger equation. With the use of the Hylleraas-type basis functions, the total photoionization cross-sections obtained are within the accuracy of a fraction of a percent, which, we believe, is the most accurate estimate for the cross-sections available. The total photoionization cross-sections for neutral helium deviate notably from the benchmark experimental data [J.A.R. Samson et al., J. Phys. B 27, 887 (1994)].  相似文献   

20.
Based on hydrodynamic model of plasmas an analytical investigation of frequency modulational interaction between copropagating high frequency pump and acoustic mode and consequent amplification (steady-state and transient) of the modulated waves is carried out in a magnetised piezoelectric semiconductor medium. The phenomenon of modulational amplification is treated as four wave interaction process involving cubic nonlinearity of the medium. Gain constants, threshold-pump intensities and optimum-pulse duration for the onset of modulational instabilities are estimated. The analysis has been performed in non-dispersive regime of the acoustic mode, which is one of the preconditions for achieving an appreciable initial steady-state growth of the modulated signal wave. It is found that the transient gain constant diminishes very rapidly if one chooses the pump pulse duration beyond the maximum gain point. Moreover, the desired value of the gain can be obtained by adjusting intensity and pulse duration of the pump and doping concentration of the medium concerned. Received 12 August 1999 and Received in final form 17 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号