首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Solid formation in a simulated high level liquid waste (HLLW) was experimentally examined at 2M and 0.5M nitric acid concentrations. The precipitation studies were conducted by refluxing the simulated HLLW around 100°C. Zr, Mo, Te and Ru were major precipitation elements in both 2M and 0.5M HNO3 solutions. The amount of precipitate in 2M HNO3 solution decreased with decreasing Zr concentration and no precipitation was found in the solution without Zr. Only about 10% of Zr, Mo and Te were precipitated, if the Mo/Zr ratio in the 0.5M HNO3 solution was kept below 0.5. Complete removal of Zr and Mo was the most effective way to prevent solid formation in the solution with 2M and 0.5M HNO3 concentrations.  相似文献   

2.
Summary Coprecipitation behaviour of As, Au, Co, Cr, Cu, Eu, Fe, Ir, La, Lu, Mn, Mo, Nb, Ni, Pd, Pt, Sb, Sc, Ta, W, Zn and Zr during precipitation of hydrous oxide of niobium from lithium niobate was investigated. The matrix was dissolved in HF-HNO3, evaporated to dryness and niobium was precipitated from HNO3-H2O2 medium. The recovery studies were made using radiotracers. A radiochemical separation scheme based on group precipitation has been developed for the determination of Au, Co, Cr, Cu, Fe, Mn, Ni, Pd, Pt, Zn, Zr and rare earth elements. The method was applied to the analysis of lithium niobate. This analysis has provided fruitful information for improving the quality of the crystal.  相似文献   

3.
This study was performed mainly from the viewpoint of consumption of diisodecylphosphoric acid (DIDPA) by the extracted Mo and Zr to estimate extraction capacities. The number of DIDPA molecules consumed per one extracted Mo atom was four when the concentration of Mo in the aqueous phase was less than 10–3M and it decreased with increasing Mo concentration. Two molecules of DIDPA were consumed per one extracted Zr atom when the Zr concentration was high. Dependencies of the distribution ratio of Mo on the concentrations of Mo, DIDPA and HNO3 are also described.  相似文献   

4.
Separation method of Zr using trans uranium resin (TRU resin) and tetra valent actinide resin (TEVA resin) was developed for the analysis of 93Zr contained in the rubble waste. Zr, Nb, and U were quantitatively extracted on the TRU resin from 3 M HNO3 and striped with 0.01 M HF, in addition, some part of Mo, Hg, Bi, and Th were also included in the stripping solution. The stripping solution was evaporated to eliminate HNO3 and the residue was dissolved in 0.1 M HF. Finally, Zr was separated from Nb and Mo with the TEVA resin.  相似文献   

5.
The solvent extraction of Zr and Hf was studied using 444-trifluoro-1-(2-thienyl)-1,3-butanedione (TTA) from a multitracer solution containing carrier-free radioisotopes of Zr, Hf, and other elements. The multitracer was prepared from Au foil irradiated with high-energy heavy-ion beams. Effects of HCl and HNO3 concentrations and organic solvent on the extraction and coextraction of other radionuclides have been studied. It was found that decalin (decahydronaphthalene) was the best solvent among 14 solvents studied and the optimum aqueous phase was 2 mol·dm–3 HCl or HNO3. About 2–10% of Sr, Rb, Sc and Nb were coextracted with Zr and Hf. The reversed phase extraction of Zr and Hf was also developed by using ethylenediaminetetraacetic acid (EDTA) solution at pH range of 8.5–10.  相似文献   

6.
The solvent extraction of thorium(IV) (4.3·10–4M) from nitric acid solution by bis-2-(butoxyethyl ether) (butex or DBC) has been studied. It has been investigated as a function of nitric acid, extractant and metal ion concentration. The effect of equilibration time, diverse ions and salting-out agent on the extraction has also been examined. Among anions, fluoride, phosphate, oxalate and perchlorate have reduced the extraction. Cations such as Na(I), K(I), Ca(II), Zn(II), Al(III), Ti(IV), Zr(IV) except Sr(II) and Pb(II) do not interfere in the extraction. The extraction is enhanced upto 97% in three stages at 6M HNO3 having 2.94M NaNO3 as salting-out agent. The extraction is found to be independent of thorium concentration in the range studied (4.3·10–4–4.3·10–2M). The temperature (18–45°C) has an adverse effect on the extraction. A 1% solution of ammonium bifluoride is found to be a good stripping solution and recovery of thorium is >98%.  相似文献   

7.
This paper describes the procedures of isolating strontium and yttrium from seawater that enable the determination of 89,90Sr. In one procedure, strontium is directly isolated from seawater on the column filled with Sr resin by binding of strontium to the resin from 3 M HNO3 in a seawater, and successive elution with HNO3. In others, strontium is precipitated from seawater with (NH4)2CO3, followed by isolation on a Sr column or an anion exchange column. It is shown that strontium precipitation is optimal with concentration of 0.3 M (NH4)2CO3 at pH = 11. In these conditions, 100% Y, 78% Sr, 80% Ca and 50% Mg are precipitated. Strontium is bound on to Sr column from 5 to 8 M HNO3, separated from other elements by elution with 3 M HNO3 and 0.05 M HNO3. Strontium and yttrium are bound on to anion exchange column from alcoholic solutions of nitric acid. The optimum mixture of alcohols for sample binding is a mixture of ethanol and methanol with the volume ratio 1:3. Strontium and yttrium are separated from Mg, Ca, K, and other elements by elution with 0.25 M HNO3 in the mixture of ethanol and methanol. After the separation, yttrium and strontium are eluted from the column with water or methanol.In the procedure of direct isolation from 1 l of the sample, the average recovery of 50% was obtained. In the remaining two procedures, the strontium recovery was about 60% for the Sr column and 65% for anion exchange column. Recovery of yttrium is about 70% for the anion exchange column. It turned out that the procedure with the Sr resin (direct isolation and isolation after precipitation) is simpler and faster in the phase of the isolation on the column in comparison with the procedure with the anion exchanger. The procedure with the anion exchanger, however, enables the simultaneous isolation of yttrium and strontium and rapid determination of 89,90Sr. These procedures were tested by determination of 89,90Sr on liquid scintillation counter and Cherenkov counting in 5 M HNO3. Obtained results showed that activity of 50 mBq l−1 of 89,90Sr and higher can be simultaneously determined.  相似文献   

8.

The behavior of group-4 homologs Zr and Hf on extraction-chromatographic sorbents LN resin and TRU resin in mixtures of HF and HNO3 is considered. Distribution coefficients of the elements in the mixtures of 5·10−4 M–1 M HF and 0.01 M–5 M HNO3 are determined. Strong retention of both elements was found on LN resin in the range of concentrations c(HF) ≤ 0.01 M for all concentrations of HNO3. Retention tends to gradually disappear while increasing c(HF) to 0.5 M. On TRU resin retention is observed only in solutions with c(HNO3) ≥ 2 M and c(HF) ≤ 0.01 M. The possibility of separating Zr(IV) and Hf(IV) on LN resin is illustrated in two different acid mixtures, whereas their separation on TRU resin under the conditions studied in this work is difficult. The results obtained can be used to isolate analytes from multicomponent mixtures during analytical tasks, as well as to separate them from each other.

  相似文献   

9.
To sophisticate the nuclear fuel recycling processes, the transfer percentages for Pd, Mo, Te, and Sb should be determined. Each element solution containing NaNO3 or HNO3 was fed consistently into the thin film evaporator regulated in vac and at 50 °C. The analyte percentages in the inside of the lid, in the condenser, and in the distillate were 10-1%/m2, 10-3%/m2, and 10-3% (DF = 105), respectively. The Mo percentage in the condenser was lower by a factor of 10 than those of other elements investigated. The NO3 - percentages were nearly constant despite increasing HNO3 concentrations, however, the ratios decreased with increasing NaNO3 concentrations.  相似文献   

10.
We have developed a radiochemical neutron activation analysis technique (RNAA) of pure uranium with using extraction chromatographic separation of 239Np from impurity elements in TBP-6M HNO3 media. The estimation of influence of fission products of 235U on the results by radiochemical neutron activation analysis has been carried out. For it we have performed NAA with preconcentration of impurity elements. Experiments show that in this case the apparent concentration of Y, Zr, Mo, Cs, La, Ce, Pr, Nd exceeds the true concentration by 2500–3000 times. Therefore, determination of these elements is not possible by RNAA. This technique allowed to use the determination of 26 impurity elements with detection limit 10−5–10−9% by mass. This developed technique may be used for the determination of impurities in uranium and its compounds.  相似文献   

11.
Zusammenfassung Eine Absorptionsmethode zur direkten Bestimmung von Cu, Ag und Pd in Pb-Sn-Legierungen wurde erarbeitet. Für die Bestimmung vorteilhafte Absorptionslinien (Cu 324,7 nm, Ag 338,3 nm und Pd 276,3 nm) wurden ermittelt und auf diesen intermetallische Interferenzen von 0–500 ppm Cu, Ag und Pd sowie von 10000ppm Pb und Sn gemessen. 1g der Legierung wird in 10 ml HNO3 (D 1,52) und 2 ml 50 % HF gelöst. Die Lösung wird in einer Acetylen-Luft-Flamme analysiert. Die Methode erlaubt Gehalte bis zu 3·10–4 % Cu, 5·10–4 % Ag und 8·10–4% Pd (zweifache Blindwerthöhe) mit ausreichender Genauigkeit zu bestimmen.
Rapid determination of Cu, Ag and Pd in PbSn-tinning baths by atomic-absorption spectroscopy
An atomic absorption method for direct determination of Cu, Ag and Pd in Pb-Sn-alloys has been developed. For the determination favourable absorption lines (Cu 324.7 nm, Ag 338.3 nm and Pd 276.3 nm) were found out. Intermetallic interferences of 0–500 ppm of Cu, Ag and Pd as also 10000 ppm of Pb and Sn were measured on these lines. 1 g of the alloy is dissolved in 10 ml HNO3 (d 1.52) and 2 ml of 50 % HF. The solution is analyzed in an acetylene-air flame. This method allows the analyzing of contents up to 3×10–4 % Cu, 5·10–4% Ag and 8×10–4% Pd (twofold blank) with sufficient precision.
  相似文献   

12.
Studies have been carried out on the solubility of Pu(III) oxalate by precipitation of Pu(III) oxalate from varying concentrations of HNO3/HCl (0.5–2.0M) solutions and also by equilibrating freshly prepared Pu(III) oxalate with solutions containing varying concentrations of HNO3/HCl, oxalic acid and ascorbic acid. Pu(III) solutions in HNO3 and HCl media were prepared by reduction of Pu(IV) with ascorbic acid. 0.01–0.10M ascorbic acid concentration in the aqueous solution was maintained as holding reductant. The solubility of Pu(III) oxalate was found to be a minimum in 0.5M–1M HNO3/HCl solutions containing 0.05M ascorbic acid and 0.2M excess oxalic acid in the supernatant.  相似文献   

13.
Electrochemical reduction of U(VI) in nitric acid-hydrazine solution is greatly influenced by the concentration of nitric acid. In low acidity nitric acid solution such as 0.1M (M=mol/dm3) HNO3, U(VI) was firstly reduced to U(V) and then partially reduced to U(IV). In high acidity nitric acid solution, e.g., 3-6M HNO3, an electrode process of two-electron transfer was involved in the reduction of U(VI). A higher U(IV) yield could be achieved in nitric acid solution with higher concentration. Hydrazine was very effective in suppressing the reduction of concentrated nitric acid, and the optimal concentration of hydrazine added was 0.075 to 0.15M in 6M HNO3 This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The formation property of Mo precipitate was investigated and improved the existing process was using H2O2 that acts as an interfering compound in a subsequent alumina adsorption process. The property of the Mo precipitate was investigated by using SEM, FTIR, TG-DTA, and XRD. The simulated solution consisted of 1M nitric acid containing seven elements (Mo, I, Ru, Zr, Ce, Nd, Sr) and their radioactive tracers. As a result, the precipitate was composed of the Mo precipitate and re-precipitated a-benzoinoxime which was added excessively for increasing the precipitation efficiency. It was confirmed that the Mo precipitate was formed by the reaction of two a-benzoinoxime molecules and one MoO2 2+. Molybdenum precipitate was dissolved in 0.4M NaOH solution within 5 minutes without H2O2. Hydrogen peroxide induced only the rapid dissolution of the a-benzoinoxime re-precipitate. Also, the dissolution method without H2O2 was favorable in the purification aspect because Zr and Ru were contained as a small fraction of 1.3% and 7.7%, respectively, in the dissolving solution.  相似文献   

15.
The possibility of simultaneous extraction of palladium and technetium from nitrate solutions was investigated using tri-n-octylamine (TOA) solutions in carbon tetrachloride as a heavy, non-flammable diluent. Conditions of technetium extraction being essentially known, the main attention was focussed on the extraction of palladium which was studied in dependence on the concentration of nitric acid, salts (nitrates, chlorides, nitrites), urea and palladium. A strong decrease of Pd extraction with 10% TOA in CCl4 has been found above a palladium concentration of 10−4M but in the presence of chlorides and nitrites a satisfactory high distribution can be preserved. Both Tc and Pd extracted with TOA/CCl4 can be stripped into dilute ammoniacal solutions. An extraction procedure for the simultaneous isolation of Pd (80% yield) and Tc (99%) from fission product waste solutions (0.20 g Tc and 0.17 g Pd/dm3 0.5–1.0M HNO3) is proposed.  相似文献   

16.
HNO3 transport across tri-n-butyl phosphate kerosene oil supported liquid membrane with or without uranyl ion transport has been studied. Parameters studied are the effect of TBP in the membrane, nitric acid in the feed solution and nitrate ion concentration in the feed solution. The flux of protons for 1 to 10 mol·dm–3 HNO3 solution is in the range of (0–25)·10–4 mol·m–2·s–1 and for the TBP concentration range of 0.359 to 3.59 mol·dm–3, the flux determined is (8.9 to 22)·10–4 mol·m–2·s–1. From the experimental data and using theoretical equations the complex under transport through the membrane appears to be 2TBP·HNO3 both in the presence and absence of uranyl ions. The diffusion coefficient for H+ ions through the membrane as a function of TBP concentration varies from (53 to 6)·10–12 m2·s–1, based on experimental flux and permeability data. The values of this coefficient supposing 2TBP·HNO3 as diffusing species, based on viscosity data and theoretical estimation varies from (82.50 to 3.30)·10–12 m2·s–1. The value of distribution coefficient varies in the reverse direction from 0.06 to 1.46 at the same TBP concentration.  相似文献   

17.
Transport of 99mTcO4 ions across TOPO-kerosene based supported liquid membrane was investigated at different concentrations of phosphoric acid as a feed solution and different concentrations of TOPO in the membrane, where 0.9% NaCl aqueous solution was used as a stripping solution. The flux of TcO4 ions across this liquid membrane varied with the concentration of both H3PO4 and TOPO. The best permeability coefficient was obtained at concentrations, [H3PO4] = 3 mole·l–1 and [TOPO] = 0.5 mole·l–1 (P = 2.08·10–9 m2·s–1). The results were utilized for the separation of 99mTc from 99Mo, where a selective and effective separation was obtained since no 99Mo transport across this liquid membrane was noticed while a high rate of 99mTc transport took place.  相似文献   

18.
Traces of Ag, Bi, Cd, Cu, Hg, Pb, Pd and Zn are separated by carrier precipitation with dithizone from diluted HNO3 and HCl solutions. The separated trace elements are determined by flame AAS and/or by spectrophotometry. The preconcentration recovery is dependent on the acid concentration of the sample solution. The amount of dithizone precipitated is optimized. The detection limits (ng/ml) are 15.0 (Pb, Zn), 12.0 (Pd), 10.0 (Bi), 6.0 (Ag), 5.0 (Hg), 2.0 (Cu) and 1.0 (Cd). Aluminium, aluminium sulfate and gallium are analyzed with the method. The accuracy of the results was checked by differential pulse voltammetry.  相似文献   

19.
Nitric acid solutions (c Pd up to 3.2 M) with variable HNO3 concentration were studied by electronic spectroscopy, 14N and 17O NMR, acid-base titration, gravimetry, and other methods. Solid phases that precipitated on storing these solutions were studied by X-ray phase analysis, thermogravimetry, and IR spectroscopy. The conditions for stability of particular Pd(II) species were determined, and specific features of aging of such highly concentrated palladium solutions were revealed. A procedure for palladium isolation as [Pd(NH3)4](NO3)2 from nitric acid solutions in 98% yield was developed.  相似文献   

20.
Radiochemical neutron activation analysis (RNAA) has been applied for determination of rare earth elements (REE) in Vietnamese monazite. The chemical separation procedure used is based on the chromatographic elution of rare earth groups, after the separation of233Pa(Th) in irradiated monazite samples by coprecipitation with MnO2, the rare earth elements were retained by Biorad AG1×8 resin column in 10% 15.4M HNO3-90% methanol solution. The elution of heavy rare earth (HREE) and middle rare earth (MREE) groups was carried out with 10% 1M HNO3-90% methanol and 10% 0.05M HNO3-90% methanol solution, respectively; while the light rare earths (LREE) were eluted from the column by 0.1M HNO3 solution. The accuracy of the method was checked by the analysis of granodiorite GSP-I and the rare earth values were in good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号